Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 44P
(II) What is the period of a simple pendulum 53cm long (a) on the Earth, and (a) when it is in a freely falling elevator?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi-
raffe if you toss a quarter into a small dish. The dish is on a shelf above
the point where the quarter leaves your hand and is a horizontal dis-
tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with
a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin
will land in the dish. Ignore air resistance. (a) What is the height of the
shelf above the point where the quarter leaves your hand? (b) What is
the vertical component of the velocity of the quarter just before it lands
in the dish?
Figure E3.19
6.4 m/s
2.1
Can someone help me answer this thank you.
1.21 A postal employee drives a delivery truck along the route
shown in Fig. E1.21. Determine the magnitude and direction of the
resultant displacement by drawing a scale diagram. (See also Exercise
1.28 for a different approach.)
Figure E1.21
START
2.6 km
4.0 km
3.1 km
STOP
Chapter 14 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 14.1 - An object is oscillating back and forth. Which of...Ch. 14.1 - A mass is oscillating on a frictionless surface at...Ch. 14.1 - If an oscillating mass has a frequency of 1.25 Hz,...Ch. 14.2 - Which of the following represents a simple...Ch. 14.2 - By how much should the mass on the end of a spring...Ch. 14.2 - The position of a SHO is given by x = (0.80 m)...Ch. 14.3 - Suppose the spring in Fig. 1410 is compressed to x...Ch. 14.5 - If a simple pendulum is taken from sea level to...Ch. 14.5 - Return to the Chapter-Opening Question, p. 369,...Ch. 14.5 - (a) Estimate the length of a simple pendulum that...
Ch. 14 - Give some examples of everyday vibrating objects....Ch. 14 - Is the acceleration of a simple harmonic...Ch. 14 - Explain why the motion of a piston in an...Ch. 14 - Real springs have mass. Will the true period and...Ch. 14 - How could you double the maximum speed of a simple...Ch. 14 - A 5.0-kg trout is attached to the hook of a...Ch. 14 - If a pendulum clock is accurate at sea level, will...Ch. 14 - A tire swing hanging from a branch reaches nearly...Ch. 14 - For a simple harmonic oscillator, when (if ever)...Ch. 14 - A 100-g mass hangs from a long cord forming a...Ch. 14 - Two equal masses are attached to separate...Ch. 14 - Does a car bounce on its springs faster when it is...Ch. 14 - What is the approximate period of your walking...Ch. 14 - What happens to the period of a playground swing...Ch. 14 - A thin uniform rod of mass m is suspended from one...Ch. 14 - A tuning fork of natural frequency 264 Hz sits on...Ch. 14 - Why can you make water slosh back and forth in a...Ch. 14 - Give several everyday examples of resonance.Ch. 14 - Is a rattle in a car ever a resonance phenomenon?...Ch. 14 - Over the years, buildings have been able to be...Ch. 14 - (I) If a particle undergoes SHM with amplitude...Ch. 14 - (I) An elastic cord is 65 cm long when a weight of...Ch. 14 - (I) The springs of a 1500-kg car compress 5.0 mm...Ch. 14 - (I) (a) What is the equation describing the motion...Ch. 14 - (II) Estimate the stiffness of the spring in a...Ch. 14 - (II) A fishermans scale stretches 3.6 cm when a...Ch. 14 - (II) Tall buildings are designed to sway in the...Ch. 14 - (II) Construct a Table, indicating the position x...Ch. 14 - (II) A small fly of mass 0.25 g is caught in a...Ch. 14 - (II) A mass m at the end of a spring oscillates...Ch. 14 - (II) A uniform meter stick of mass M is pivoted on...Ch. 14 - (II) A balsa wood block of mass 55g floats on a...Ch. 14 - (II) Figure 1429 shows two examples of SHM,...Ch. 14 - (II) Determine the phase constant in Eq. 144 if,...Ch. 14 - (II) A vertical spring with spring stiffness...Ch. 14 - (II) The graph of displacement vs. time for a...Ch. 14 - (II) The position of a SHO as a function of time...Ch. 14 - (II) A tuning fork oscillates at a frequency of...Ch. 14 - (II) An object of unknown mass m is hung from a...Ch. 14 - (II) A 1.25-kg mass stretches a vertical spring...Ch. 14 - (II) Consider two objects, A and B, both...Ch. 14 - (II) A 1.60-kg object oscillates from a vertically...Ch. 14 - (II) A bungee jumper with mass 65.0 kg jumps from...Ch. 14 - (II) A block of mass m is supported by two...Ch. 14 - (III) A mass m is connected to two springs, with...Ch. 14 - (III) A mass m is at rest on the end of a spring...Ch. 14 - (I) A l.15-kg mass oscillates according to the...Ch. 14 - (I) (a) At what displacement of a SHO is the...Ch. 14 - (II) Draw a graph like Fig. 1411 for a horizontal...Ch. 14 - (II) A 0.35-kg mass at the end of a spring...Ch. 14 - (II) It takes a force of 95.0 to compress the...Ch. 14 - (II) A 0.0125-kg bullet strikes a 0.240-kg block...Ch. 14 - (II) If one oscillation has 5.0 times the energy...Ch. 14 - (II) A mass of 240g oscillates on a horizontal...Ch. 14 - (II) A mass resting on a horizontal, frictionless...Ch. 14 - (II) An object with mass 2.7 kg is executing...Ch. 14 - (II) Agent Arlene devised the following method of...Ch. 14 - (II) Obtain the displacement x as a function of...Ch. 14 - (II) t t = 0, a 785-g mass at rest on the end of a...Ch. 14 - (II) A pinball machine uses a spring launcher that...Ch. 14 - (I) A pendulum has a period of 1.35s on Earth....Ch. 14 - (I) A pendulum makes 32 oscillations in exactly 50...Ch. 14 - (II) A simple pendulum is 0.30m long. At t = 0 it...Ch. 14 - (II) What is the period of a simple pendulum 53cm...Ch. 14 - (II) A simple pendulum oscillates with an...Ch. 14 - (II) Your grandfather clocks pendulum has a length...Ch. 14 - (II) Derive a formula for the maximum speed vmax...Ch. 14 - (II) A pendulum consists of a tiny bob of mass M...Ch. 14 - (II) The balance wheel of a watch is a thin ring...Ch. 14 - (II) The human leg can be compared to a physical...Ch. 14 - (II) (a) Determine the equation of motion (for as...Ch. 14 - (II) A student wants to use a meter stick as a...Ch. 14 - (II) A meter stick is hung at its center from a...Ch. 14 - (II) An aluminum disk. 12.5cm in diameter and 375g...Ch. 14 - (II) A plywood disk of radius 20.0cm and mass...Ch. 14 - (II) A 0.835-kg block oscillates on the end of a...Ch. 14 - (II) Estimate how the damping constant changes...Ch. 14 - (II) A physical pendulum consists of an...Ch. 14 - (II) A damped harmonic oscillator loses 6.0% of...Ch. 14 - (II) A vertical spring of spring constant 115 N/m...Ch. 14 - (III) (a) Show that the total mechanical energy,...Ch. 14 - (III) A glider on an air track is connected by...Ch. 14 - (II) (a) For a forced oscillation at resonance ( =...Ch. 14 - Prob. 64PCh. 14 - (II) An 1150 kg automobile has springs with k =...Ch. 14 - (II) Construct an accurate resonance curve, from ...Ch. 14 - (II) The amplitude of a driven harmonic oscillator...Ch. 14 - (III) By direct substitution, show that Eq. 1422,...Ch. 14 - (III) Consider a simple pendulum (point mass bob)...Ch. 14 - A 62-kg person jumps from a window to a fire net...Ch. 14 - An energy-absorbing car bumper has a spring...Ch. 14 - The length of a simple pendulum is 0.63 m, the...Ch. 14 - A simple pendulum oscillates with frequency f....Ch. 14 - A 0.650-kg mass oscillates according to the...Ch. 14 - (a)A crane has hoisted a 1350-kg car at the...Ch. 14 - An oxygen atom at a particular site within a DNA...Ch. 14 - A seconds pendulum has a period of exactly 2.000...Ch. 14 - A 320-kg wooden raft floats on a lake. When a...Ch. 14 - At what displacement from equilibrium is the speed...Ch. 14 - A diving board oscillates with simple harmonic...Ch. 14 - A rectangular block of wood floats in a calm lake....Ch. 14 - A 950-kg car strikes a huge spring at a speed of...Ch. 14 - A 1.60-kg table is supported on four springs. A...Ch. 14 - In some diatomic molecules, the force each atom...Ch. 14 - A mass attached to the end of a spring is...Ch. 14 - Carbon dioxide is a linear molecule. The...Ch. 14 - Imagine that a 10-cm-diameter circular hole was...Ch. 14 - A thin, Straight, uniform rod of length = 1.00 m...Ch. 14 - A mass m is gently placed on the end of a freely...Ch. 14 - A child of mass m sits on top of a rectangular...Ch. 14 - Estimate the effective spring constant of a...Ch. 14 - In Section 145, the oscillation of a simple...Ch. 14 - (II) A mass m on a frictionless surface is...Ch. 14 - (III) Damping proportional to v2. Suppose the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- 1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward5. The radius of a circle is 5.5 cm. (a) What is the circumference in meters? (b) What is its area in square meters? 6. Using the generic triangle below, solve the following: 0 = 55 and c = 32 m, solve for a and b. a = 250 m and b = 180 m, solve for the angle and c. b=104 cm and c = 65 cm, solve for a and the angle b a 7. Consider the figure below representing the Temperature (T in degrees Celsius) as a function of time t (in seconds) 4 12 20 (a) What is the area under the curve in the figure below? (b) The area under the graph can be calculated using integrals or derivatives? (c) During what interval is the derivative of temperature with respect to time equal to zero?arrow_forwardPart 3: Symbolic Algebra Often problems in science and engineering are done with variables only. Don't let the different letters confuse you. Manipulate them algebraically as though they were numbers. 1. Solve 3x-7= x + 3 for x 2x-1 2. Solve- for x 2+2 In questions 3-11 solve for the required symbol/letter 3. v2 +2a(s-80), a = = 4. B= Ho I 2π r 5. K = kz² 6.xm= MAL ,d= d 7.T, 2 = 8.F=Gm 9. mgh=mv² 10.qV = mu² 80 12. Suppose that the height in meters of a thrown ball after t seconds is given by h =6+4t-t². Complete the square to find the highest point and the time when this happens. 13. Solve by completing the square c₁t² + cat + 3 = 0. 14. Solve for the time t in the following expression = 0 + vot+at²arrow_forward
- A blacksmith cools a 1.60 kg chunk of iron, initially at a temperature of 650.0° C, by trickling 30.0°C water over it. All the water boils away, and the iron ends up at a temperature of 120.0° C. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Changes in both temperature and phase. Part A How much water did the blacksmith trickle over the iron? Express your answer with the appropriate units. HÅ mwater = Value 0 ? Units Submit Request Answerarrow_forwardSteel train rails are laid in 13.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is -6.0° C. Part A How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 32.0°C? Express your answer with the appropriate units. ☐ о μΑ ? D = Value Units Submit Previous Answers Request Answer × Incorrect; Try Again; 3 attempts remaining Al Study Tools Looking for some guidance? Let's work through a few related practice questions before you go back to the real thing. This won't impact your score, so stop at anytime and ask for clarification whenever you need it. Ready to give it a try? Start Part B If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 32.0°C? Express your answer in pascals. Enter positive value if the stress is tensile and negative value if the stress is compressive. F A Ο ΑΣΦ ? Раarrow_forwardhelp me with this and the step I am so confused. It should look something like the figure i shownarrow_forward
- Part A In an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 200 W electric immersion heater in 0.250 kg of water. How much heat must be added to the water to raise its temperature from 20.5° C to 95.0°C? Express your answer in joules. ΕΠΙ ΑΣΦ Q Submit Request Answer Part B ? J How much time is required? Assume that all of the heater's power goes into heating the water. Express your answer in seconds. VG ΑΣΦ ? t = Sarrow_forwardhelp i dont understand this it should look like something like this picture. help me with the stepsarrow_forwardDraw the velocity vectors starting at the black dots and the acceleration vectors including those equal to zero.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY