Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 49P
(II) The balance wheel of a watch is a thin ring of radius 0.95 cm and oscillates with a frequency of 3.10 Hz. If a torque of 1.1 × 10–5 m·N causes the wheel to rotate 45°, calculate the mass of the balance wheel.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
12–191. The arm of the robot moves so that r= 3 ft is
constant, and its grip A moves along the path z = (3 sin 40) ft,
where 0 is in radians. If 0 = (0.51) rad, where t is in seconds,
determine the magnitudes of the grip's velocity and
acceleration when t = 3 s.
*12-192. For a short time the arm of the robot is extending
such that i = 1.5 ft/s when r= 3 ft, z = (47) ft, and
0 = 0.5t rad, where t is in seconds. Determine the
magnitudes of the velocity and acceleration of the grip A
when i = 3 s.
49. (II) Suppose a 5.8 x 10¹0 kg meteorite struck the Earth
at the equator with a
speed v = 2.2 x 10¹ m/s,
as shown in Fig. 11-37 and
remained stuck. By what
factor would this affect the
rotational frequency of the
Earth (1 rev/day)?
FIGURE 11-37
Problem 49.
Earth
North
Pole
12–125. The car travels around the circular track having a
radius of r = 300 m such that when it is at point A it has a
velocity of 5 m/s, which is increasing at the rate of
i = (0.061) m/s², where t is in seconds. Determine the
magnitudes of its velocity and acceleration when it has
traveled one-third the way around the track.
12–126. The car travels around the portion of a circular
track having a radius of r= 500 ft such that when it is at
point A it has a velocity of 2 ft/s, which is increasing at the
rate of i = (0.0021) ft/s², where t is in seconds. Determine
the magnitudes of its velocity and acceleration when it has
traveled three-fourths the way around the track.
Chapter 14 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 14.1 - An object is oscillating back and forth. Which of...Ch. 14.1 - A mass is oscillating on a frictionless surface at...Ch. 14.1 - If an oscillating mass has a frequency of 1.25 Hz,...Ch. 14.2 - Which of the following represents a simple...Ch. 14.2 - By how much should the mass on the end of a spring...Ch. 14.2 - The position of a SHO is given by x = (0.80 m)...Ch. 14.3 - Suppose the spring in Fig. 1410 is compressed to x...Ch. 14.5 - If a simple pendulum is taken from sea level to...Ch. 14.5 - Return to the Chapter-Opening Question, p. 369,...Ch. 14.5 - (a) Estimate the length of a simple pendulum that...
Ch. 14 - Give some examples of everyday vibrating objects....Ch. 14 - Is the acceleration of a simple harmonic...Ch. 14 - Explain why the motion of a piston in an...Ch. 14 - Real springs have mass. Will the true period and...Ch. 14 - How could you double the maximum speed of a simple...Ch. 14 - A 5.0-kg trout is attached to the hook of a...Ch. 14 - If a pendulum clock is accurate at sea level, will...Ch. 14 - A tire swing hanging from a branch reaches nearly...Ch. 14 - For a simple harmonic oscillator, when (if ever)...Ch. 14 - A 100-g mass hangs from a long cord forming a...Ch. 14 - Two equal masses are attached to separate...Ch. 14 - Does a car bounce on its springs faster when it is...Ch. 14 - What is the approximate period of your walking...Ch. 14 - What happens to the period of a playground swing...Ch. 14 - A thin uniform rod of mass m is suspended from one...Ch. 14 - A tuning fork of natural frequency 264 Hz sits on...Ch. 14 - Why can you make water slosh back and forth in a...Ch. 14 - Give several everyday examples of resonance.Ch. 14 - Is a rattle in a car ever a resonance phenomenon?...Ch. 14 - Over the years, buildings have been able to be...Ch. 14 - (I) If a particle undergoes SHM with amplitude...Ch. 14 - (I) An elastic cord is 65 cm long when a weight of...Ch. 14 - (I) The springs of a 1500-kg car compress 5.0 mm...Ch. 14 - (I) (a) What is the equation describing the motion...Ch. 14 - (II) Estimate the stiffness of the spring in a...Ch. 14 - (II) A fishermans scale stretches 3.6 cm when a...Ch. 14 - (II) Tall buildings are designed to sway in the...Ch. 14 - (II) Construct a Table, indicating the position x...Ch. 14 - (II) A small fly of mass 0.25 g is caught in a...Ch. 14 - (II) A mass m at the end of a spring oscillates...Ch. 14 - (II) A uniform meter stick of mass M is pivoted on...Ch. 14 - (II) A balsa wood block of mass 55g floats on a...Ch. 14 - (II) Figure 1429 shows two examples of SHM,...Ch. 14 - (II) Determine the phase constant in Eq. 144 if,...Ch. 14 - (II) A vertical spring with spring stiffness...Ch. 14 - (II) The graph of displacement vs. time for a...Ch. 14 - (II) The position of a SHO as a function of time...Ch. 14 - (II) A tuning fork oscillates at a frequency of...Ch. 14 - (II) An object of unknown mass m is hung from a...Ch. 14 - (II) A 1.25-kg mass stretches a vertical spring...Ch. 14 - (II) Consider two objects, A and B, both...Ch. 14 - (II) A 1.60-kg object oscillates from a vertically...Ch. 14 - (II) A bungee jumper with mass 65.0 kg jumps from...Ch. 14 - (II) A block of mass m is supported by two...Ch. 14 - (III) A mass m is connected to two springs, with...Ch. 14 - (III) A mass m is at rest on the end of a spring...Ch. 14 - (I) A l.15-kg mass oscillates according to the...Ch. 14 - (I) (a) At what displacement of a SHO is the...Ch. 14 - (II) Draw a graph like Fig. 1411 for a horizontal...Ch. 14 - (II) A 0.35-kg mass at the end of a spring...Ch. 14 - (II) It takes a force of 95.0 to compress the...Ch. 14 - (II) A 0.0125-kg bullet strikes a 0.240-kg block...Ch. 14 - (II) If one oscillation has 5.0 times the energy...Ch. 14 - (II) A mass of 240g oscillates on a horizontal...Ch. 14 - (II) A mass resting on a horizontal, frictionless...Ch. 14 - (II) An object with mass 2.7 kg is executing...Ch. 14 - (II) Agent Arlene devised the following method of...Ch. 14 - (II) Obtain the displacement x as a function of...Ch. 14 - (II) t t = 0, a 785-g mass at rest on the end of a...Ch. 14 - (II) A pinball machine uses a spring launcher that...Ch. 14 - (I) A pendulum has a period of 1.35s on Earth....Ch. 14 - (I) A pendulum makes 32 oscillations in exactly 50...Ch. 14 - (II) A simple pendulum is 0.30m long. At t = 0 it...Ch. 14 - (II) What is the period of a simple pendulum 53cm...Ch. 14 - (II) A simple pendulum oscillates with an...Ch. 14 - (II) Your grandfather clocks pendulum has a length...Ch. 14 - (II) Derive a formula for the maximum speed vmax...Ch. 14 - (II) A pendulum consists of a tiny bob of mass M...Ch. 14 - (II) The balance wheel of a watch is a thin ring...Ch. 14 - (II) The human leg can be compared to a physical...Ch. 14 - (II) (a) Determine the equation of motion (for as...Ch. 14 - (II) A student wants to use a meter stick as a...Ch. 14 - (II) A meter stick is hung at its center from a...Ch. 14 - (II) An aluminum disk. 12.5cm in diameter and 375g...Ch. 14 - (II) A plywood disk of radius 20.0cm and mass...Ch. 14 - (II) A 0.835-kg block oscillates on the end of a...Ch. 14 - (II) Estimate how the damping constant changes...Ch. 14 - (II) A physical pendulum consists of an...Ch. 14 - (II) A damped harmonic oscillator loses 6.0% of...Ch. 14 - (II) A vertical spring of spring constant 115 N/m...Ch. 14 - (III) (a) Show that the total mechanical energy,...Ch. 14 - (III) A glider on an air track is connected by...Ch. 14 - (II) (a) For a forced oscillation at resonance ( =...Ch. 14 - Prob. 64PCh. 14 - (II) An 1150 kg automobile has springs with k =...Ch. 14 - (II) Construct an accurate resonance curve, from ...Ch. 14 - (II) The amplitude of a driven harmonic oscillator...Ch. 14 - (III) By direct substitution, show that Eq. 1422,...Ch. 14 - (III) Consider a simple pendulum (point mass bob)...Ch. 14 - A 62-kg person jumps from a window to a fire net...Ch. 14 - An energy-absorbing car bumper has a spring...Ch. 14 - The length of a simple pendulum is 0.63 m, the...Ch. 14 - A simple pendulum oscillates with frequency f....Ch. 14 - A 0.650-kg mass oscillates according to the...Ch. 14 - (a)A crane has hoisted a 1350-kg car at the...Ch. 14 - An oxygen atom at a particular site within a DNA...Ch. 14 - A seconds pendulum has a period of exactly 2.000...Ch. 14 - A 320-kg wooden raft floats on a lake. When a...Ch. 14 - At what displacement from equilibrium is the speed...Ch. 14 - A diving board oscillates with simple harmonic...Ch. 14 - A rectangular block of wood floats in a calm lake....Ch. 14 - A 950-kg car strikes a huge spring at a speed of...Ch. 14 - A 1.60-kg table is supported on four springs. A...Ch. 14 - In some diatomic molecules, the force each atom...Ch. 14 - A mass attached to the end of a spring is...Ch. 14 - Carbon dioxide is a linear molecule. The...Ch. 14 - Imagine that a 10-cm-diameter circular hole was...Ch. 14 - A thin, Straight, uniform rod of length = 1.00 m...Ch. 14 - A mass m is gently placed on the end of a freely...Ch. 14 - A child of mass m sits on top of a rectangular...Ch. 14 - Estimate the effective spring constant of a...Ch. 14 - In Section 145, the oscillation of a simple...Ch. 14 - (II) A mass m on a frictionless surface is...Ch. 14 - (III) Damping proportional to v2. Suppose the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
15. A good scientific hypothesis is based on existing evidence and leads to testable predictions. What hypothes...
Campbell Biology: Concepts & Connections (9th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Examine the following diagrams of cells from an organism with diploid number 2n = 6, and identify what stage of...
Genetic Analysis: An Integrated Approach (3rd Edition)
Which culture produces the most lactic acid? Use the following choices to answer questions. a. E. coli growing ...
Microbiology: An Introduction
Explain all answers clearly, using complete sentences and proper essay structure if needed. An asterisk (*) des...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If global warming continues, its likely that some ice from the polar ice caps of the Earth will melt and the water will be distributed closer to the equator. If this occurs, would the length of the day (one rotation) (a) increase, (b) decrease, or (c) remain the same?arrow_forward12–163. The car travels along the circular curve having a radius r = 400 ft. At the instant shown, its angular rate of rotation is ở = 0.025 rad/s, which is decreasing at the rate ö = -0.008 rad/s². Determine the radial and transverse components of the car's velocity and acceleration at this instant and sketch these components on the curve. *12–164. The car travels along the circular curve of radius r = 400 ft with a constant speed of v = 30 ft/s. Determine the angular rate of rotation ở of the radial line r and the magnitude of the car's acceleration. r= 400 ftarrow_forward(c) A small ball of mass 0.75 kg is attached to one end of a 1.25 m long massless rod, and the other end of the rod is hung from a pivot. When the resulting pendulum is 30° from the vertical, what is the magnitude of the gravitational torque calculated about the pivot?arrow_forward
- A compound pendulum pivoted at O consists of a hollow-disk of radius R-40 +2da em with a hole of radius 20 cm and a thin rod (1.2 kg, total length = 30 cm) atached on the top. Given the mas density of the hollow disk is 4 kg'm'. 60 cm 20 cm 30 cm 40 cm R-40 + 2-di cm (a) Find the rotational inertia / of the compound pendulum at an axis passing through the plane of paper and the pivot O. (b) Find the distance hm of the center of mass of the compound pendulum from pivot O. (c) Find the angular frequency e (d) Find the period 7.arrow_forwarddo F in a A body of mass 0.5kg is tied to end of string & rotated about other end horizontal fircle of 1.2m radice It the speed of revolution is sorpm. Calculate (1) angular relocity (2) linear relocity (2) tension in sitting.arrow_forwardA small mass of 4.6 kg is attached to a 2.7 m long light string that is connected to a pivot point, creating a pendulum. Calculate the magnitude of the torque (due to the force of gravity) about this pivot point when the string makes a 4.3° angle with the vertical.arrow_forward
- 12-186. The slotted arm AB drives pin C through the spiral groove described by the equation r = a. If the angular velocity is constant at 0, determine the radial and transverse components of velocity and acceleration of the pin. сarrow_forward(3) The 12-lb lever OA with 10-in. radius of gyration about point O is initially at rest in the vertical position (0 = 90°), where the attached spring of stiffness k= 3 lb/in is unstretched. Calculate the constant moment M applied to the lever at O which will give the lever an angular velocity o = 4 rad/sec as the lever rotates to the horizontal position at 0 = 0. k = 3 lb/in. ww 15" 15"arrow_forward13-95. A smooth can C, having a mass of 3 kg, is lifted from a feed at A to a ramp at B by a rotating rod. If the rod maintains a constant angular velocity of è = 0.5 rad/s, determine the force which the rod exerts on the can at the instant 0 = 30°. Neglect the effects of friction in the calculation and the size of the can so that r = (1.2 cos 0) m. The ramp from A to B is circular, having a radius of 600 mm. ở = 0.5 rad/s 600 mm 600 mm-arrow_forward
- Express each of the following in terms of the other angular measures: (a) 38o ,(b) 1/8 rev, (c) 2.18 rad, and (d) 130 gradient.arrow_forward3) The center of gravity of a simple pendulum of mass m and length L is located at the pendulum bob, a distance L from the pivot point. The center of gravity of a uniform rod of the same mass m and length 2L pivoted at one end is also a distance L from the pivot point. Compared to the period of the simple pendulum, is the period of this uniform rod a) longer; b) shorter; or c) the same and why?arrow_forward(18) A uniform rod (length = 2.4 m) of negligible mass has a 1.0-kg point mass attached to one end and a 2.0-kg point mass attached to the other end. The rod is mounted to rotate freely about a horizontal axis that is perpendicular to the rod and that passes through a point 1.0 m from the 2.0-kg mass. The rod is released from rest when it is horizontal. What is the angular velocity of the rod at the instant the 2.0-kg mass passes through its low point?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY