EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
7th Edition
ISBN: 8220100853180
Author: STOKER
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 14, Problem 14.26EP

(a)

Interpretation Introduction

Interpretation:

The given alcohol structures denotes a cis- or trans- isomer has to be indicated.

Concept Introduction:

Alkenes are hydrocarbons that contain at least one double bond in it.  There will not be any free rotation of the double bond in alkene.  Hence, cis‑trans isomerism is possible.  The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.

A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.

A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.

Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.

Cis‑trans isomers are not constitutional isomers but they are stereoisomers.

Cycloalkanes can also exhibit stereoisomerism.  The difference between constitutional isomerism and stereoisomerism is that, the result of difference in connectivity of carbon atoms is known as constitutional isomerism and the result of differences in configuration is known as stereoisomerism.  Stereoisomers are compounds that possess same molecular formula and connectivity of atoms but different orientations of atoms in space.  Cis isomers are the one where the two substituted groups on different carbon atom are present above or below the plane or the ring of carbon atoms.  Trans isomers are the one where the two substituted groups on different carbon atom are present one above and one below the plane or the ring of carbon atoms.

(b)

Interpretation Introduction

Interpretation:

The given alcohol structures denotes a cis- or trans- isomer has to be indicated.

Concept Introduction:

Alkenes are hydrocarbons that contain at least one double bond in it.  There will not be any free rotation of the double bond in alkene.  Hence, cis‑trans isomerism is possible.  The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.

A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.

A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.

Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.

Cis‑trans isomers are not constitutional isomers but they are stereoisomers.

Cycloalkanes can also exhibit stereoisomerism.  The difference between constitutional isomerism and stereoisomerism is that, the result of difference in connectivity of carbon atoms is known as constitutional isomerism and the result of differences in configuration is known as stereoisomerism.  Stereoisomers are compounds that possess same molecular formula and connectivity of atoms but different orientations of atoms in space.  Cis isomers are the one where the two substituted groups on different carbon atom are present above or below the plane or the ring of carbon atoms.  Trans isomers are the one where the two substituted groups on different carbon atom are present one above and one below the plane or the ring of carbon atoms.

(c)

Interpretation Introduction

Interpretation:

The given alcohol structures denotes a cis- or trans- isomer has to be indicated.

Concept Introduction:

Alkenes are hydrocarbons that contain at least one double bond in it.  There will not be any free rotation of the double bond in alkene.  Hence, cis‑trans isomerism is possible.  The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.

A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.

A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.

Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.

Cis‑trans isomers are not constitutional isomers but they are stereoisomers.

Cycloalkanes can also exhibit stereoisomerism.  The difference between constitutional isomerism and stereoisomerism is that, the result of difference in connectivity of carbon atoms is known as constitutional isomerism and the result of differences in configuration is known as stereoisomerism.  Stereoisomers are compounds that possess same molecular formula and connectivity of atoms but different orientations of atoms in space.  Cis isomers are the one where the two substituted groups on different carbon atom are present above or below the plane or the ring of carbon atoms.  Trans isomers are the one where the two substituted groups on different carbon atom are present one above and one below the plane or the ring of carbon atoms.

(d)

Interpretation Introduction

Interpretation:

The given alcohol structures denotes a cis- or trans- isomer has to be indicated.

Concept Introduction:

Alkenes are hydrocarbons that contain at least one double bond in it.  There will not be any free rotation of the double bond in alkene.  Hence, cis‑trans isomerism is possible.  The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.

A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.

A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.

Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.

Cis‑trans isomers are not constitutional isomers but they are stereoisomers.

Cycloalkanes can also exhibit stereoisomerism.  The difference between constitutional isomerism and stereoisomerism is that, the result of difference in connectivity of carbon atoms is known as constitutional isomerism and the result of differences in configuration is known as stereoisomerism.  Stereoisomers are compounds that possess same molecular formula and connectivity of atoms but different orientations of atoms in space.  Cis isomers are the one where the two substituted groups on different carbon atom are present above or below the plane or the ring of carbon atoms.  Trans isomers are the one where the two substituted groups on different carbon atom are present one above and one below the plane or the ring of carbon atoms.

Blurred answer
Students have asked these similar questions
According to a recent study, 1 out of 50,000 people will be diagnosed with cystic fibrosis. Cystic fibrosis can be caused by a mutant form of the CFTR gene (dominant gene symbol is F and mutant is f). A. Using the rate of incidence above, what is the frequency of carriers of the cystic fibrosis allele for CFTR in the US? (3 pts) B. In a clinical study, 400 people from the population mentioned in (A.) were genotyped for BRCA1 Listed below are the results. Are these results in Hardy- Weinberg equilibrium? Use Chi Square to show whether or not they are. (3 pts) BRCA1 genotype # of women 390 BB Bb bb 10 0 12pt Paragraph L BIUAV V T² v V
Outline a method for using apomixis to maintain feminized CannabisAssume apomixis is controlled by a single dominant gene. You can choose the type of apomixis: obligate or facultative, gametophytic or sporophytic. Discuss advantages and disadvantages of your proposed method.
Kinetics: One-Compartment First-Order Absorption 1. In vivo testing provides valuable insight into a drug’s kinetics. Assessing drug kinetics following multiple routes of administration provides greater insight than a single route of administration alone. The following data was collected in 250-g rats following bolus IV, oral (PO), and intraperitoneal (ip) administration.  Using this data and set of graphs, determine:(calculate for each variable) (a) k, C0, V, and AUC* for the bolus iv data  (b) k, ka, B1, and AUC* for the po data  c) k, ka, B1, and AUC* for the ip data  (d) relative bioavailability for po vs ip, Fpo/Fip  (e)absolute ip bioavailability, Fip  (f) absolute po bioavailability, Fpo

Chapter 14 Solutions

EBK GENERAL, ORGANIC, AND BIOLOGICAL CH

Ch. 14.4 - Prob. 2QQCh. 14.4 - Prob. 3QQCh. 14.5 - Prob. 1QQCh. 14.5 - Prob. 2QQCh. 14.5 - Prob. 3QQCh. 14.5 - Prob. 4QQCh. 14.6 - Prob. 1QQCh. 14.6 - Prob. 2QQCh. 14.6 - Prob. 3QQCh. 14.7 - Prob. 1QQCh. 14.7 - Prob. 2QQCh. 14.8 - Prob. 1QQCh. 14.8 - Prob. 2QQCh. 14.9 - Prob. 1QQCh. 14.9 - Prob. 2QQCh. 14.9 - Prob. 3QQCh. 14.9 - Prob. 4QQCh. 14.9 - Prob. 5QQCh. 14.9 - Prob. 6QQCh. 14.10 - Prob. 1QQCh. 14.10 - Prob. 2QQCh. 14.11 - Prob. 1QQCh. 14.11 - Prob. 2QQCh. 14.11 - Prob. 3QQCh. 14.12 - Prob. 1QQCh. 14.12 - Prob. 2QQCh. 14.13 - Prob. 1QQCh. 14.13 - Prob. 2QQCh. 14.13 - Prob. 3QQCh. 14.14 - Prob. 1QQCh. 14.14 - Prob. 2QQCh. 14.14 - Prob. 3QQCh. 14.15 - Prob. 1QQCh. 14.15 - Prob. 2QQCh. 14.15 - Prob. 3QQCh. 14.15 - Prob. 4QQCh. 14.16 - Prob. 1QQCh. 14.16 - Prob. 2QQCh. 14.17 - Prob. 1QQCh. 14.17 - Prob. 2QQCh. 14.17 - Prob. 3QQCh. 14.18 - Prob. 1QQCh. 14.18 - Prob. 2QQCh. 14.18 - Prob. 3QQCh. 14.19 - Prob. 1QQCh. 14.19 - Prob. 2QQCh. 14.20 - Prob. 1QQCh. 14.20 - Prob. 2QQCh. 14.20 - Prob. 3QQCh. 14.20 - Prob. 4QQCh. 14.20 - Prob. 5QQCh. 14.21 - Prob. 1QQCh. 14.21 - Prob. 2QQCh. 14.21 - Prob. 3QQCh. 14.21 - Prob. 4QQCh. 14.21 - Prob. 5QQCh. 14 - Prob. 14.1EPCh. 14 - Prob. 14.2EPCh. 14 - Prob. 14.3EPCh. 14 - Prob. 14.4EPCh. 14 - Prob. 14.5EPCh. 14 - Prob. 14.6EPCh. 14 - Prob. 14.7EPCh. 14 - Prob. 14.8EPCh. 14 - Prob. 14.9EPCh. 14 - Prob. 14.10EPCh. 14 - Write a condensed structural formula for each of...Ch. 14 - Write a condensed structural formula for each of...Ch. 14 - Prob. 14.13EPCh. 14 - Prob. 14.14EPCh. 14 - Prob. 14.15EPCh. 14 - Prob. 14.16EPCh. 14 - Prob. 14.17EPCh. 14 - Prob. 14.18EPCh. 14 - Each of the following alcohols is named...Ch. 14 - Prob. 14.20EPCh. 14 - Prob. 14.21EPCh. 14 - Prob. 14.22EPCh. 14 - Prob. 14.23EPCh. 14 - Prob. 14.24EPCh. 14 - Prob. 14.25EPCh. 14 - Prob. 14.26EPCh. 14 - Prob. 14.27EPCh. 14 - Prob. 14.28EPCh. 14 - Prob. 14.29EPCh. 14 - Prob. 14.30EPCh. 14 - Prob. 14.31EPCh. 14 - Prob. 14.32EPCh. 14 - Prob. 14.33EPCh. 14 - Prob. 14.34EPCh. 14 - Explain why the boiling points of alcohols are...Ch. 14 - Explain why the water solubilities of alcohols are...Ch. 14 - Prob. 14.37EPCh. 14 - Prob. 14.38EPCh. 14 - Prob. 14.39EPCh. 14 - Which member of each of the following pairs of...Ch. 14 - Determine the maximum number of hydrogen bonds...Ch. 14 - Determine the maximum number of hydrogen bonds...Ch. 14 - Prob. 14.43EPCh. 14 - Prob. 14.44EPCh. 14 - Prob. 14.45EPCh. 14 - Prob. 14.46EPCh. 14 - Classify each of the following alcohols as a...Ch. 14 - Classify each of the following alcohols as a...Ch. 14 - Classify each of the following alcohols as a...Ch. 14 - Classify each of the following alcohols as a...Ch. 14 - Prob. 14.51EPCh. 14 - Prob. 14.52EPCh. 14 - Prob. 14.53EPCh. 14 - Prob. 14.54EPCh. 14 - Prob. 14.55EPCh. 14 - Prob. 14.56EPCh. 14 - Prob. 14.57EPCh. 14 - Prob. 14.58EPCh. 14 - Prob. 14.59EPCh. 14 - Prob. 14.60EPCh. 14 - The alcohol 2,2-dimethyl-1-butanol cannot be...Ch. 14 - Prob. 14.62EPCh. 14 - Prob. 14.63EPCh. 14 - Prob. 14.64EPCh. 14 - Draw the structure of the aldehyde or ketone...Ch. 14 - Draw the structure of the aldehyde or ketone...Ch. 14 - Prob. 14.67EPCh. 14 - Prob. 14.68EPCh. 14 - Prob. 14.69EPCh. 14 - Prob. 14.70EPCh. 14 - Three isomeric pentanols with unbranched carbon...Ch. 14 - Prob. 14.72EPCh. 14 - Prob. 14.73EPCh. 14 - Prob. 14.74EPCh. 14 - Prob. 14.75EPCh. 14 - Prob. 14.76EPCh. 14 - Prob. 14.77EPCh. 14 - Prob. 14.78EPCh. 14 - Prob. 14.79EPCh. 14 - Prob. 14.80EPCh. 14 - Prob. 14.81EPCh. 14 - Prob. 14.82EPCh. 14 - Prob. 14.83EPCh. 14 - Prob. 14.84EPCh. 14 - Prob. 14.85EPCh. 14 - Prob. 14.86EPCh. 14 - Prob. 14.87EPCh. 14 - Prob. 14.88EPCh. 14 - Prob. 14.89EPCh. 14 - Prob. 14.90EPCh. 14 - Prob. 14.91EPCh. 14 - Classify each of the following compounds as an...Ch. 14 - Draw or write the following for the simplest ether...Ch. 14 - Draw or write the following for the simplest ether...Ch. 14 - Prob. 14.95EPCh. 14 - Prob. 14.96EPCh. 14 - Prob. 14.97EPCh. 14 - Prob. 14.98EPCh. 14 - Prob. 14.99EPCh. 14 - Prob. 14.100EPCh. 14 - Prob. 14.101EPCh. 14 - Prob. 14.102EPCh. 14 - Prob. 14.103EPCh. 14 - Prob. 14.104EPCh. 14 - Prob. 14.105EPCh. 14 - Prob. 14.106EPCh. 14 - Prob. 14.107EPCh. 14 - Prob. 14.108EPCh. 14 - Prob. 14.109EPCh. 14 - Prob. 14.110EPCh. 14 - Prob. 14.111EPCh. 14 - Prob. 14.112EPCh. 14 - Prob. 14.113EPCh. 14 - Give common names for all ethers that are...Ch. 14 - How many isomeric ethers exist when the R groups...Ch. 14 - Prob. 14.116EPCh. 14 - Prob. 14.117EPCh. 14 - Draw condensed structural formulas for the...Ch. 14 - Prob. 14.119EPCh. 14 - Prob. 14.120EPCh. 14 - Prob. 14.121EPCh. 14 - Prob. 14.122EPCh. 14 - Prob. 14.123EPCh. 14 - How do the chemical reactivities of ethers compare...Ch. 14 - Explain why ether molecules cannot hydrogen-bond...Ch. 14 - How many hydrogen bonds can form between a single...Ch. 14 - Classify each of the following molecular...Ch. 14 - Classify each of the following molecular...Ch. 14 - Prob. 14.129EPCh. 14 - Prob. 14.130EPCh. 14 - Prob. 14.131EPCh. 14 - Draw a condensed structural formula for each of...Ch. 14 - Prob. 14.133EPCh. 14 - Prob. 14.134EPCh. 14 - Prob. 14.135EPCh. 14 - Prob. 14.136EPCh. 14 - Prob. 14.137EPCh. 14 - For each of the following pairs of compounds,...Ch. 14 - Assign an IUPAC name to each of the following...Ch. 14 - Prob. 14.140EPCh. 14 - Prob. 14.141EPCh. 14 - Prob. 14.142EPCh. 14 - Prob. 14.143EPCh. 14 - Prob. 14.144EPCh. 14 - Prob. 14.145EPCh. 14 - Prob. 14.146EP
Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Text book image
Principles Of Pharmacology Med Assist
Biology
ISBN:9781337512442
Author:RICE
Publisher:Cengage
Text book image
Basic Clinical Laboratory Techniques 6E
Biology
ISBN:9781133893943
Author:ESTRIDGE
Publisher:Cengage
Text book image
Curren'S Math For Meds: Dosages & Sol
Nursing
ISBN:9781305143531
Author:CURREN
Publisher:Cengage
Text book image
Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning
Text book image
Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College