Concept explainers
CALC Jerk. A guitar string vibrates at a frequency of 440 Hz. A point at its center moves in
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Additional Science Textbook Solutions
The Cosmic Perspective
University Physics Volume 1
University Physics (14th Edition)
Physics for Scientists and Engineers with Modern Physics
Conceptual Physical Science (6th Edition)
Lecture- Tutorials for Introductory Astronomy
- A suspension bridge oscillates with an effective force constant of 1.00108 N/m . (a) How much energy is needed to make it oscillate with an amplitude of 0.100 m? (b) If soldiers march across the bridge with a cadence equal to the bridge’s natural frequency and impart 1.00104 J of energy each second, how long does it take for the bridge’s oscillations to go from 0.100 m to 0.500 m amplitude.arrow_forwardA spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.50 N is applied. A 0.500-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (a) What is the force constant of the spring? (b) What are the angular frequency , the frequency, and the period of the motion? (c) What is the total energy of the system? (d) What is the amplitude of the motion? (c) What are the maximum velocity and the maximum acceleration of the particle? (f) Determine the displacement x of the particle from the equilibrium position at t = 0.500 s. (g) Determine the velocity and acceleration of the particle when t = 0.500 s.arrow_forwardA spherical bob of mass m and radius R is suspended from a fixed point by a rigid rod of negligible mass whose length from the point of support to the center of the bob is L (Fig. P16.75). Find the period of small oscillation. N The frequency of a physical pendulum comprising a nonuniform rod of mass 1.25 kg pivoted at one end is observed to be 0.667 Hz. The center of mass of the rod is 40.0 cm below the pivot point. What is the rotational inertia of the pendulum around its pivot point?arrow_forward
- In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forward(a) If frequency is not constant for some oscillation, can the oscillation be SHM? (b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?arrow_forwardA pendulum of length L and mass M has a spring of force constant k connected to it at a distance h below its point of suspension (Fig. P12.65). Find the frequency of vibration of the system for small values of the amplitude (small ). Assume the vertical suspension rod of length L is rigid, but ignore its mass. Figure P12.65arrow_forward
- A block of mass m rests on a frictionless, horizontal surface and is attached to two springs with spring constants k1 and k2 (Fig. P16.22). It is displaced to the right and released. Find an expression for the angular frequency of oscillation of the resulting simple harmonic motion. FIGURE P16.22 Problems 22 and 81.arrow_forwardAn automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to the road for every additional 100 kg of passengers. It is driven with a constant horizontal component of speed 20 km/h over a washboard road with sinusoidal bumps. The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively. The distance between the front and back wheels is 2.4 m. Find the amplitude of oscillation of the automobile, assuming it moves vertically as an undamped driven harmonic oscillator. Neglect the mass of the wheels and springs and assume that the wheels are always in contact with the road.arrow_forwardA block of mass m is connected to two springs of force constants k1 and k2 in two ways as shown in Figure P12.56. In both cases, the block moves on a frictionless table after it is displaced from equilibrium and released. Show that in the two cases the block exhibits simple harmonic motion with periods (a) T=2m(k1+k2)k1k2 and (b) T=2mk1+k2 Figure P12.56arrow_forward
- A 500-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 10.0 cm. Calculate the maximum value of its (a) speed and (b) acceleration, (c) the speed and (d) the acceleration when the object is 6.00 cm from the equilibrium position, and (e) the time interval required for the object to move from x = 0 to x = 8.00 cm.arrow_forwardWhen a block of mass M, connected to the end of a spring of mass ms = 7.40 g and force constant k, is set into simple harmonic motion, the period of its motion is T=2M+(ms/3)k A two-part experiment is conducted with the use of blocks of various masses suspended vertically from the spring as shown in Figure P15.76. (a) Static extensions of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Construct a graph of Mg versus x and perform a linear least-squares fit to the data. (b) From the slope of your graph, determine a value for k for this spring. (c) The system is now set into simple harmonic motion, and periods are measured with a stopwatch. With M = 80.0 g, the total time interval required for ten oscillations is measured to be 13.41 s. The experiment is repeated with M values of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding time intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Make a table of these masses and times. (d) Compute the experimental value for T from each of these measurements. (e) Plot a graph of T2 versus M and (f) determine a value for k from the slope of the linear least-squares fit through the data points. (g) Compare this value of k with that obtained in part (b). (h) Obtain a value for ms from your graph and compare it with the given value of 7.40 g.arrow_forwardA very light rigid rod of length 0.500 m extends straight out from one end of a meter-stick. The combination is suspended from a pivot at the upper end of the rod as shown in Figure P12.31. The combination is then pulled out by a small angle and released. (a) Determine the period of oscillation of the system. (b) By what percentage does the period differ from the period of a simple pendulum 1.00 m long? Figure P12.31arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning