Concept explainers
CP Two uniform solid spheres, each with mass M = 0.800 kg and radius R = 0.0800 m, are connected by a short, light rod that is along a diameter of each sphere and are at rest on a horizontal tabletop. A spring with force constant k = 160 N/m has one end attached to the wall and the other end attached to a frictionless ring that passes over the rod at the center of mass of the spheres, which is midway between the centers of the two spheres. The spheres are each pulled the same distance from the wall, stretching the spring, and released. There is sufficient friction between the tabletop and the spheres for the spheres to roll without slipping as they move back and forth on the end of the spring. Show that the motion of the center of mass of the spheres is simple harmonic and calculate the period.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Additional Science Textbook Solutions
College Physics
College Physics (10th Edition)
University Physics (14th Edition)
Life in the Universe (4th Edition)
Conceptual Physical Science (6th Edition)
Physics: Principles with Applications
- As shown in Figure P8.20, a bullet of mass m and speed v passes completely through a pendulum bob of mass M. The bullet emerges with a speed of v/2. The pendulum bob is suspended by a stiff rod (not a string) of length , and negligible mass. What is the minimum value of v such that the pendulum bob will barely swing through a complete vertical circle? Figure P8.20arrow_forwardA thin wire has mass m and length L. It is bent into a semicircular shape. The wire is placed in the x-y plane such that it is symmetrical across the x-axis, and the two end points of the wire are placed at x = 0. Write an expression for the center of mass XCM of the wire about the x-axis. The mass of the wire is 69 g and the length of the wire is 0.65 m. Determine the x-coordinate for the center of mass in meters.arrow_forwardA 5.00-kg block is moving at 5.00 m/s along a horizontal frictionless surface toward an ideal massless spring that is attached to a wall. After the block collides with the spring, it keeps moving rightwards until the spring reaches its maximum compression of 1.68 m. After reaching maximum compression, the block and spring come to rest momentarily, and then move leftwards. While it is moving to the left, what is the speed of the block when it has moved so that the spring is compressed to only one-half of the maximum distance?arrow_forward
- A arrow of mass 0.01 kg moving horizontal suddenly strikes a block of wood of mass 8.6 kg that is suspended by a light string, like a pendulum. The arrow passes through the wood, then the wood swings upward and momentarily stops when the string is horizontal. The length of the string is 2.0 cm. How long did it take the arrow to go through the wood if the friction force between the bullies and the wood is 100 N?arrow_forwardThe 100 kg sphere A is released from rest at an angle of α from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a final height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B. What is the velocity of A just before it hits block B? And what is the length of the rope l, if angle alpha is 30 degreesarrow_forwardThe 100 kg sphere A is released from rest at an angle of α from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a final height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B. Which of the following best approximates the value of height h? 0.255m 0.510 m 5.00 m 1.274 marrow_forward
- The 100 kg sphere A is released from rest at an angle of α from the vertical, and hits the 10 kg block B (initially at rest), causing block B to have an initial velocity of 5 m/s as it enters the circular ramp (radius = 5 m) and stop temporarily at a final height h. The coefficient of restitution between sphere A and the block B is 0.6. Assume all surfaces are frictionless. Also assume direct impact between A and B. What is the velocity of A just before it hits block B? Choices:2.94 m/s11.25 m/s5.00 m/s3.44 m/sarrow_forwardA metal cannonball of mass m rests next to a tree at the very edge of a cliff 36.0 m above the surface of the ocean. In an effort to knock the cannonball off the cliff, some children tie one end of a rope around a stone of mass 80.0 kg and the other end to a tree limb just above the cannonball. They tighten the rope so that the stone just clears the ground and hangs next to the cannonball. The children manage to swing the stone back until it is held at rest 1.80 m above the ground. The children release the stone, which then swings down and makes a head-on, elastic collision with the cannonball, projecting it horizontally off the cliff. The cannonball lands in the ocean a horizontal distance R away from its initial position. (a) Find the horizontal component R of the cannonball’s displacement as it depends on m. (b) What is the maximum possible value for R, and (c) to what value of m does it correspond? (d) For the stone– cannonball–Earth system, is mechanical energy conserved…arrow_forward1. An inventor patents a "golf machine". It consists of a "golf club" which is really a pendulum of length L = 2 (m), with a massles string and a mass M = 30 (kg) on the end. By pulling back on the pendulum until the string makes an angle 0= 10° from the vertical, and then releasing it from rest, the golf club strikes the "golf ball" exactly horizontally. The golf ball is a mass m = 0.1 (kg) that rests on a platform which is h = 20 (cm) above the horizontal ground. Assume that all collisions are elastic and all masses are point masses. Finally you should ignore air resistance but gravity acts down as usual. L %3D M) m h How far does m travel horizontally (before it hits the ground)? |How long does it take from the time M is released from rest to the time it strikes m? [Hint: think pendulum]arrow_forward
- QIIII: A thin uniform rod of mass Mr and length L is suspended from the ceiling and mounted on a horizontal frictionless axle at the top. The rod is initially at rest in its equilibrium position when a ball of play dough, of mass mb, strikes the rod at its lower end and remains stuck to the rod. The sticky ball is thrown with an initial speed v0 at a 60 degree angle from the horizontal direction, and strikes the rod when it reaches the top of its trajectory, as shown in Fig.4. The acceleration due to gravity has magnitude g and air resistance is negligible. a. Determine the velocity of the ball of play dough right before it sticks to the rod. Use the x- y coordinate system defined in Fig.4. b. Determine the angular velocity of the rod+ball system right after the collision. Take counterclockwise as positive. c. - Establish the differential equation satisfied by the rod+ball system after the collision and determine the angular frequency of the system. You may assume that the small…arrow_forwardA thin rod of length L = 3.00 m with variable mass density (x) = 3.00x² kg/m lies on the x-axis with one end at the origin. Where on the %3D %3D X-axis is the center of mass of this rod? {note this is a variable mass density} O 2.50 m O 1.50 m O 2.25 m O 2.70 m O 1.88 m 吕0 000 DII F1 F2 F3 F4 F5 F 6 F7 F8 F9 # $4 & 4 7 Q E A D K 00 LLarrow_forwardThree solid, uniform boxes are aligned as in the figure below. Find the x- and y-coordinates (in m) of the center of mass of the three boxes, measured from the bottom left corner of box A. (Consider the three-box system.) HINT X cm y em || = Origin E E m 0.360 m A 0.750 kg 0.420 m B 1.00 kg 0.240 m с 0.650 kg 0.410 m Xarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning