BIO (a) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note that is sung. If someone sings the note B flat, which has a frequency of 466 Hz, how much time does it take the person’s vocal cords to vibrate through one complete cycle, and what is the angular frequency of the cords? (b) Hearing. When sound waves strike the eardrum, this membrane vibrates with the same frequency as the sound. The highest pitch that young humans can hear has a period of 50.0 μ s. What are the frequency and angular frequency of the vibrating eardrum for this sound? (c) Vision. When light having vibrations with angular frequency ranging from 2.7 × 10 15 rad/s to 4.7 × 10 15 rad/s strikes the retina of the eye, it stimulates the receptor cells there and is perceived as visible light. What are the limits of the period and frequency of this light ? (d) Ultrasound. High-frequency sound waves (ultrasound) are used to probe the interior of the body, much as x rays do. To detect small objects such as tumors, a frequency of around 5.0 MHz is used. What are the period and angular frequency of the molecular vibrations caused by this pulse of sound?
BIO (a) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note that is sung. If someone sings the note B flat, which has a frequency of 466 Hz, how much time does it take the person’s vocal cords to vibrate through one complete cycle, and what is the angular frequency of the cords? (b) Hearing. When sound waves strike the eardrum, this membrane vibrates with the same frequency as the sound. The highest pitch that young humans can hear has a period of 50.0 μ s. What are the frequency and angular frequency of the vibrating eardrum for this sound? (c) Vision. When light having vibrations with angular frequency ranging from 2.7 × 10 15 rad/s to 4.7 × 10 15 rad/s strikes the retina of the eye, it stimulates the receptor cells there and is perceived as visible light. What are the limits of the period and frequency of this light ? (d) Ultrasound. High-frequency sound waves (ultrasound) are used to probe the interior of the body, much as x rays do. To detect small objects such as tumors, a frequency of around 5.0 MHz is used. What are the period and angular frequency of the molecular vibrations caused by this pulse of sound?
BIO (a) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note that is sung. If someone sings the note B flat, which has a frequency of 466 Hz, how much time does it take the person’s vocal cords to vibrate through one complete cycle, and what is the angular frequency of the cords? (b) Hearing. When sound waves strike the eardrum, this membrane vibrates with the same frequency as the sound. The highest pitch that young humans can hear has a period of 50.0 μs. What are the frequency and angular frequency of the vibrating eardrum for this sound? (c) Vision. When light having vibrations with angular frequency ranging from 2.7 × 1015 rad/s to 4.7 × 1015 rad/s strikes the retina of the eye, it stimulates the receptor cells there and is perceived as visible light. What are the limits of the period and frequency of this light? (d) Ultrasound. High-frequency sound waves (ultrasound) are used to probe the interior of the body, much as x rays do. To detect small objects such as tumors, a frequency of around 5.0 MHz is used. What are the period and angular frequency of the molecular vibrations caused by this pulse of sound?
Certain types of particle detectors can be used to reconstruct the tracks left by unstable, fast-moving sub-atomic particles. Assume
that a track with a length of L=2.97 mm in the laboratory frame of reference has been observed. Further assume that you
determined from other detector data that the particle moved at a speed of L=0.910 ⚫ c, also in the laboratory frame of reference. c
denotes the speed of light in vacuum. What proper lifetime would you determine for this particle from the data given?
T= 4.0
S
generated worksheet
While cruising down University Boulevard you are stopped by a cop who states that you ran a red traffic light. Because you don't
want to pay the stiff fine, you are attempting a physics defense. You claim that due to the relativistic Doppler effect, the red color of
the light λ=616 nm appeared green '=531 nm to you. The cop makes a quick calculation of his own and rejects your defense.
How fast, in terms of your speed u divided by the speed of light in vacuum c, would you have to drive to justify your claim? Note
that the speed u is taken to be a positive quantity.
U 4.0
C
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.