MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 14.95PP
In the model of Problem 14.94, what is the mechanical energy of the vibration when the tip is not interacting with the surface? (a) 1.2 × 10−18 J; (b) 1.2 × 10−16 J; (c) 1.2 × 10−9 J; (d) 5.0 × 10−8 J.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We can model a molecular bond as a spring between two atoms that vibrate with simple harmonic motion.The figure below shows an simple harmonic motion approximation for the potential energy of an HCl molecule.This is a good approximation when E < 4 ×10^−19. Since mH << mCl, we assume that the hydrogen atomoscillates back and forth while the chlorine atom remains at rest. Estimate the oscillation frequency of theHCl molecule using information in the figure below.
Carbon-14 (14C) is an unstable isotope of carbon. It has the same chemical properties and electronic structure as the much more abundant isotope carbon-12 (12C), but it has different nuclear properties. Its mass is 14 u, greater than that of carbon-12 because of the two extra neutrons in the carbon-14 nucleus. Assume the CO molecular potential energy is the same for both isotopes of carbon. (a) What is the vibrational frequency of 14CO? (b) What is the moment of inertia of 14CO? (c) What wavelengths of light can be absorbed by 14CO in the (υ = 0, J = 10) state that cause it to end up in the υ = 1 state?
A silver atom in a solid oscillates in simple harmonic
motion in some direction with a frequency of 10¹2 per
second. What is the force constant of the bonds connecting
one atom with the other? (Take, molecular weight of silver
= 108 and Avogadro number = 6.02 × 10²3 g mol-¹)
Chapter 14 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 14.1 - A body like that shown in Fig. 14.2 oscillates...Ch. 14.2 - A glider is attached to a spring as shown in Fig....Ch. 14.3 - (a) To double the total energy for a mass-spring...Ch. 14.4 - A block attached to a hanging ideal spring...Ch. 14.5 - When a body oscillating on a horizontal spring...Ch. 14.6 - The center of gravity of a simple pendulum of mass...Ch. 14.7 - An airplane is flying in a straight line at a...Ch. 14.8 - When driven at a frequency near its natural...Ch. 14 - An object is moving with SHM of amplitude A on the...Ch. 14 - Think of several examples in everyday life of...
Ch. 14 - Does a tuning fork or similar tuning instrument...Ch. 14 - A box containing a pebble is attached to an ideal...Ch. 14 - If a uniform spring is cut in half, what is the...Ch. 14 - A glider is attached to a fixed ideal spring and...Ch. 14 - Two identical gliders on an air track are...Ch. 14 - You are captured by Martians, taken into their...Ch. 14 - The system shown in Fig. 14.17 is mounted in an...Ch. 14 - If a pendulum has a period of 2.5 s on earth, what...Ch. 14 - A simple pendulum is mounted in an elevator. What...Ch. 14 - What should you do to the length of the string of...Ch. 14 - If a pendulum clock is taken to a mountaintop,...Ch. 14 - When the amplitude of a simple pendulum increases,...Ch. 14 - Prob. 14.15DQCh. 14 - At what point in the motion of a simple pendulum...Ch. 14 - Could a standard of time be based on the period of...Ch. 14 - For a simple pendulum, clearly distinguish between...Ch. 14 - In designing structures in an earthquake-prone...Ch. 14 - BIO (a) Music. When a person sings, his or her...Ch. 14 - If an object on a horizontal, frictionless surface...Ch. 14 - The tip of a tuning fork goes through 440 complete...Ch. 14 - The displacement of an oscillating object as a...Ch. 14 - A machine part is undergoing SUM with a frequency...Ch. 14 - BIO The wings of the blue-throated hummingbird...Ch. 14 - A 2.40-kg ball is attached to an unknown spring...Ch. 14 - In a physics lab, you attach a 0.200-kg air-track...Ch. 14 - When a body of unknown mass is attached to an...Ch. 14 - When a 0.750-kg mass oscillates on an ideal...Ch. 14 - An object is undergoing SHM with period 0.900 s...Ch. 14 - A small block is attached to an ideal spring and...Ch. 14 - A 2.00-kg. frictionless block is attached to an...Ch. 14 - Repeat Exercise 14.13, but assume that at t = 0...Ch. 14 - The point of the needle of a sewing machine moves...Ch. 14 - A small block is attached to an ideal spring and...Ch. 14 - BIO Weighing Astronauts. This procedure has been...Ch. 14 - A 0.400-kg object undergoing SHM has ax = 1.80...Ch. 14 - On a frictionless, horizontal air track, a glider...Ch. 14 - A 0.500-kg mass on a spring has velocity as a...Ch. 14 - A 1.50-kg mass on a spring has displacement as a...Ch. 14 - BIO Weighing a Virus. In February 2004, scientists...Ch. 14 - CALC Jerk. A guitar string vibrates at a frequency...Ch. 14 - For the oscillating object in Fig. E14.4, what are...Ch. 14 - A small block is attached to an ideal spring and...Ch. 14 - A small block is attached to an ideal spring and...Ch. 14 - A 0.150-kg toy is undergoing SHM on the end of a...Ch. 14 - A harmonic oscillator has angular frequency and...Ch. 14 - A 0.500-kg glider, attached to the end of an ideal...Ch. 14 - A cheerleader waves her pom-pom in SHM with an...Ch. 14 - CP For the situation described in part (a) of...Ch. 14 - A block with mass m = 0.300 kg is attached to one...Ch. 14 - You are watching an object that is moving in SHM....Ch. 14 - A 2.00-kg frictionless block is attached to an...Ch. 14 - A 2.00-kg frictionless block attached to an ideal...Ch. 14 - A mass is oscillating with amplitude A at the end...Ch. 14 - A 175-g glider on a horizontal, frictionless air...Ch. 14 - A proud deep-sea fisherman hangs a 65.0-kg fish...Ch. 14 - A thrill-seeking cat with mass 4.00 kg is attached...Ch. 14 - A uniform, solid metal disk of mass 6.50 kg and...Ch. 14 - A certain alarm clock ticks four times each...Ch. 14 - A thin metal disk with mass 2.00 103 kg and...Ch. 14 - You want to find the moment of inertia of a...Ch. 14 - CALC The balance wheel of a watch vibrates with an...Ch. 14 - You pull a simple pendulum 0.240 m long to the...Ch. 14 - An 85.0-kg mountain climber plans to swing down,...Ch. 14 - A building in San Francisco has light fixtures...Ch. 14 - A Pendulum on Mars. A certain simple pendulum has...Ch. 14 - After landing on an unfamiliar planet, a space...Ch. 14 - In the laboratory, a student studies a pendulum by...Ch. 14 - A simple pendulum 2.00 m long swings through a...Ch. 14 - A small sphere with mass m is attached to a...Ch. 14 - Two pendulums have the same dimensions (length L)...Ch. 14 - We want to hang a thin hoop on a horizontal nail...Ch. 14 - A 1.80-kg connecting rod from a car engine is...Ch. 14 - Prob. 14.56ECh. 14 - The two pendulums shown in Fig. E14.57 each...Ch. 14 - CP A holiday ornament in the shape of a hollow...Ch. 14 - A 1.35-kg object is attached to a horizontal...Ch. 14 - A 50.0-g hard-boiled egg moves on the end of a...Ch. 14 - An unhappy 0.300-kg rodent, moving on the end of a...Ch. 14 - A mass is vibrating at the end of a spring of...Ch. 14 - A sinusoidally varying driving force is applied to...Ch. 14 - An object is undergoing SHM with period 0.300 s...Ch. 14 - An object is undergoing SHM with period 1.200 s...Ch. 14 - Four passengers with combined mass 250 kg compress...Ch. 14 - At the end of a ride at a winter-theme amusement...Ch. 14 - CP A block with mass M rests on a frictionless...Ch. 14 - A 1.50-kg, horizontal, uniform tray is attached to...Ch. 14 - CP A 10.0-kg mass is traveling to the right with a...Ch. 14 - An apple weighs 1.00 N. When you hang it from the...Ch. 14 - CP SHM of a Floating Object. An object with height...Ch. 14 - CP A square object of mass m is constructed of...Ch. 14 - An object with mass 0.200 kg is acted on by an...Ch. 14 - CALC A 2.00-kg bucket containing 10.0 kg of water...Ch. 14 - A uniform beam is suspended horizontally by two...Ch. 14 - A 5.00-kg partridge is suspended from a pear tree...Ch. 14 - A 0.0200-kg bolt moves with SHM that has an...Ch. 14 - CP SHM of a Butchers Scale. A spring of negligible...Ch. 14 - A 40.0-N force stretches a vertical spring 0.250...Ch. 14 - Dont Miss the Boat. While on a visit to Minnesota...Ch. 14 - CP An interesting, though highly impractical...Ch. 14 - CP A rifle bullet with mass 8.00 g and initial...Ch. 14 - CP Two uniform solid spheres, each with mass M =...Ch. 14 - CP In Fig. P14.85 the upper ball is released from...Ch. 14 - The Silently Ringing Bell. A large, 34.0-kg bell...Ch. 14 - CALC A slender, uniform, metal rod with mass M is...Ch. 14 - Two identical thin rods, each with mass m and...Ch. 14 - DATA A mass m is attached to a spring of force...Ch. 14 - DATA You hang various masses m from the end of a...Ch. 14 - DATA Experimenting with pendulums, you attach a...Ch. 14 - The Effective Force Constant of Two Springs. Two...Ch. 14 - CALC A Spring with Mass. The preceding problems in...Ch. 14 - BIO SEEING SURFACES AT THE NANOSCALE. One...Ch. 14 - In the model of Problem 14.94, what is the...Ch. 14 - By what percentage does the frequency of...
Additional Science Textbook Solutions
Find more solutions based on key concepts
46. The inductor in the RLC tuning circuit of an AM radio has a value of 350 mH. What should be the value of th...
College Physics: A Strategic Approach (4th Edition)
(III) Suppose a ray strikes the left face of the prism in Fig. 32–52 at 45.0° as shown, but is totally internal...
Physics for Scientists and Engineers with Modern Physics
As Earth orbits the Sun, it also rotates in a counterclockwise direction about its axis as shown in Figure 1. W...
Lecture- Tutorials for Introductory Astronomy
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the short story The Pit and the Pendulum by 19th-century American horror writer Edgar Allen Poe, a man is tied to a table directly below a swinging pendulum that is slowly lowered toward him. The bob of the pendulum is a 1-ft steel scythe connected to a 30-ft brass rod. When the man first sees the pendulum, the pivot is roughly 1 ft above the scythe so that a 29-ft length of the brass rod oscillates above the pivot (Fig. P16.39A). The man escapes when the pivot is near the end of the brass rod (Fig. P16.39B). a. Model the pendulum as a particle of mass ms 5 2 kg attached to a rod of mass mr 5 160 kg. Find the pendulums center of mass and rotational inertia around an axis through its center of mass. (Check your answers by finding the center of mass and rotational inertia of just the brass rod.) b. What is the initial period of the pendulum? c. The man saves himself by smearing food on his ropes so that rats chew through them. He does so when he has no more than 12 cycles before the pendulum will make contact with him. How much time does it take the rats to chew through the ropes? FIGURE P16.39arrow_forwardThe cylinder is confined by the brake as shown in (Figure 1), where = 0.4. The spring has a stiffness of k= 3 MN/m and an unstretched length of 60 mm. End C of member ABC slides freely along the smooth vertical guide. Figure 400 mm. 200 mm 250 mm 1 of 1 Determine the required compression in the spring in order to resist a torque of 800 Nm on the cylinder. Express your answer to three significant figures and include the appropriate units. S= ■ Value Submit μÅ Provide Feedback Request Answer → Units ?arrow_forwardIn the methane molecule, CHA, each hydrogen atom is at the corner of a regular tetrahedron with the carbon atom at the center. If one of the C-H is in the direction of A = î +Î+R and an adjacent C-H bond is at the direction B=1-7- R. results to an angular bond of approximately 109° for a static frozen molecule. However, the molecule we can encounter everyday continuously vibrates and interact with the surrounding causing its bond vector to vary slightly. According to a new spectroscopy analysis, the adjacent bond vectors was found to be A = 0.89i + 0.95j + 0.9k B = 1.06i + -1.08j + -0.83k What is the angle (in degrees) between the bonds based on this new data? Note: Only 1% of error is permitted for the correct answer.arrow_forward
- One end of a horizontal spring with force constant 130.0 N/mN/m is attached to a vertical wall. A 5.00 kgkg block sitting on the floor is placed against the spring (the block touches the uncompressed spring). The coefficient of kinetic friction between the block and the floor is μkμk = 0.400. You apply a constant force F⃗ F→ to the block. F⃗ F→ has magnitude 89.0 NN and is directed toward the wall. A.what is the speed of the block at the instant the spring is compressed 80.0cm? B.what is the magnitude of the block's acceleration at the instant the spring is compressed at 80.0cm?arrow_forwardAssuming that the vibrations of 35C2 a molecule are equivalent to those of a harmonic oscillator with a force constant Kf=329Nm-1 , what is the zero point energy of vibration of this molecule? 3.29x10-21 J 9.67X10-22 J 6.044 X 10-20 J 35.45 X10-23 J 5.61 X 10-21 Jarrow_forwardThe surface tension of soap solution is 0.035 N/m. The energy needed to increase the radius of the bubble from 4 cm to 6 cm is (a) 1.5 x 10 J (b) 1.5 x 10-2 J (c) 3 x 10-2J (d) 1.5 x 104Jarrow_forward
- The right circular cone rotates about the z axis at a constant rate of wi = 4.2 rad/s without slipping on the horizontal plane. (Figure 1) Figure 1 of 1 50 mmarrow_forwardIn the methane molecule, CHA, each hydrogen atom is at the corner of a regular tetrahedron with the carbon atom at the center. If one of the C-H is in the direction of A= î +ĵ +R and an adjacent C-H bond is at the direction B=î-Î-R. results to an angular bond of approximately 109° for a static frozen molecule. However, the molecule we can encounter everyday continuously vibrates and interact with the surrounding causing its bond vector to vary slightly. According to a new spectroscopy analysis, the adjacent bond vectors was found to be A = 0.88i + 1.05j + 0.94k B = 0.95i + -0.91j + -0.86k What is the angle (in degrees) between the bonds based on this new data?arrow_forwardA Physics Question is the image attachedarrow_forward
- The second was officially defined by the Simple Harmonic Motion of the Caesium 133 atom. It has a precise frequency of 9.19 x 10^9 Hz and a mass of 2.207 x 10–25 kg. Assume the amplitude of the atoms motion is 3.34 x 10-10 m. What is the spring constant of the atom's vibration?arrow_forwardHow many calories are required to change two grams of 0°C ice to 100°C steam? The latent heat of fusion is 80 cal/g and the latent heat of vaporization is 540 cal/g. The specific heat of water is 1.00 cal/g · K. A 0.10-kg object attached to a spring whose spring constant is 250 N/m executes simple harmonic motion. If its maximum speed is 10.0 m/s, the amplitude of its oscillation is:arrow_forwardTwo springs are attached to a 500 g object, one directly above (k = 24.9 N.m-1) and the other directly below (k = 37.3 N.m-1) it. If in the process, the above spring extends by 6.8 cm, by how much and along which direction shall the other spring be deformed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY