6.84 ⚫ BIO All birds, independent of their size, must maintain a power output of 10-25 watts per kilogram of object mass in order to fly by flapping their wings. (a) The Andean giant hummingbird (Patagona gigas) has mass 70 g and flaps its wings 10 times per second while hovering. Estimate the amount of work done by such a hummingbird in each wingbeat. (b) A 70 kg athlete can maintain a power output of 1.4 kW for no more than a few seconds; the steady power output of a typical athlete is only 500 W or so. Is it possible for a human-powered aircraft to fly for extended periods by flapping its wings? Explain.

Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter7: Energy Of A System
Section: Chapter Questions
Problem 7.8OQ: An a simple pendulum swings back and forth, the forces acting on the suspended object are (a) the...
icon
Related questions
Question

Make sure to draw a sketch with scale please

6.84 ⚫ BIO All birds, independent of their size, must maintain a
power output of 10-25 watts per kilogram of object mass in order to fly
by flapping their wings. (a) The Andean giant hummingbird (Patagona
gigas) has mass 70 g and flaps its wings 10 times per second while
hovering. Estimate the amount of work done by such a hummingbird
in each wingbeat. (b) A 70 kg athlete can maintain a power output of
1.4 kW for no more than a few seconds; the steady power output of a
typical athlete is only 500 W or so. Is it possible for a human-powered
aircraft to fly for extended periods by flapping its wings? Explain.
Transcribed Image Text:6.84 ⚫ BIO All birds, independent of their size, must maintain a power output of 10-25 watts per kilogram of object mass in order to fly by flapping their wings. (a) The Andean giant hummingbird (Patagona gigas) has mass 70 g and flaps its wings 10 times per second while hovering. Estimate the amount of work done by such a hummingbird in each wingbeat. (b) A 70 kg athlete can maintain a power output of 1.4 kW for no more than a few seconds; the steady power output of a typical athlete is only 500 W or so. Is it possible for a human-powered aircraft to fly for extended periods by flapping its wings? Explain.
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning