Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.3, Problem 8P
The composition of moist air is given on a molar basis to be 78 percent N2, 20 percent O2, and 2 percent water vapor. Determine the mass fractions of the constituents of air.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A gas mixture consists of methane (CH4) and carbon dioxide (CO2). The mass fraction of CH4 is 0.84. The total mass is 10 kg. Determine the gas constant of the mixture in kJ/kg-K. Use four decimal places for your final answer.
The composition of a mixture of gases 60% carbon dioxide, 20%oxygen and 20% Helium by volume. What is the apparent molecular weight of this mixture?
A gas mixture has the following composition on a mole basis: 60 percent N₂ and 40 percent CO2. Determine the gravimetric analysis
of the mixture, its molar mass, and the gas constant. The universal gas constant is Ru= 8.314 kJ/kmol-K. Use the table containing the
molar mass, gas constant, and critical-point properties.
The mass fraction of N₂ is 48.8 %.
The mass fraction of CO2 is 51.2 %.
The molar mass of the mixture is
The gas constant of the mixture is
197 kg/kmol.
197 kJ/kg-K.
Chapter 13 Solutions
Thermodynamics: An Engineering Approach
Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 6PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - Prob. 11PCh. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 18PCh. 13.3 - Prob. 19PCh. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - Prob. 26PCh. 13.3 - Prob. 27PCh. 13.3 - Prob. 28PCh. 13.3 - 13–29 A gas mixture at 350 K and 300 kPa has the...Ch. 13.3 - Prob. 30PCh. 13.3 - Prob. 31PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 33PCh. 13.3 - Prob. 34PCh. 13.3 - Prob. 35PCh. 13.3 - Prob. 36PCh. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 38PCh. 13.3 - Prob. 39PCh. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - Prob. 42PCh. 13.3 - Prob. 43PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 45PCh. 13.3 - Prob. 46PCh. 13.3 - 13–47C Is the total internal energy change of an...Ch. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - Prob. 52PCh. 13.3 - Prob. 53PCh. 13.3 - Prob. 54PCh. 13.3 - Prob. 55PCh. 13.3 - Prob. 56PCh. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - Prob. 59PCh. 13.3 - Prob. 60PCh. 13.3 - Prob. 61PCh. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 64PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 69PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 71PCh. 13.3 - Prob. 72PCh. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 80PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Prob. 83PCh. 13.3 - Prob. 84RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - Prob. 89RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 94RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - 13–102 An ideal-gas mixture consists of 2 kmol of...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 104FEPCh. 13.3 - Prob. 105FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 107FEPCh. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The gas constant of CO2, N2, and He are 0.1889, 0.2968, and 2.077 kJ/kg-°K respectively. The three are mixed with 0.4 kg CO2, 0.7 kg, N2, and 0.05 kg He. The mixture has a temperature of 35°C and pressure of 180 kPa. Calculate the volume of the mixture in cubic meters. 0.1598 0.6625 0.7856arrow_forwardA mixture of hydrocarbon gases is composed of 60 percent methane, 25 percent propane, and 15 percent butane by volume. Determine the apparent gas constant of the mixture.arrow_forwardA mixture of gaseous reactants is put into a cylinder, where a chemical reaction turns them into gaseous products. The cylinder has a piston that moves in or out, as necessary, to keep a constant pressure on the mixture of 1 atm. The cylinder is also submerged in a large insulated water bath. (See sketch at right.) 1 atm pressure piston cylinder From previous experiments, this chemical reaction is known to absorb 322. kJ of energy. water bath The temperature of the water bath is monitored, and it is determined from this data that 188. kJ of heat flows out of the gases system during the reaction. O exothermic Is the reaction exothermic or endothermic? O endothermic O up Does the temperature of the water bath go up or ? O down down? O neither O in Does the piston move in or out? O out O neither O does work Does the gas mixture do work, or is work done on it? O work done on it O neither How much work is done on (or by) the gas mixture? Be sure your answer has the correct number of…arrow_forward
- The mass fractions of a mixture of gases are 10 percent nitrogen, 3 percent helium, 55 percent methane, and 32 percent ethane. Determine the mole fractions of each constituent, the mixture’s apparent molecular weight, the partial pressure of each constituent when the mixture pressure is 1200 kPa, and the apparent specific heats of the mixture when the mixture is at the room temperature. The universal gas constant is Ru = 8.314 kJ/kmol·K. Use the table containing the molar mass, gas constant, and critical-point properties and the table containing the ideal-gas specific heats of various common gases. The mole fraction of nitrogen is _______. The mole fraction of helium is _____. The mole fraction of methane is ._______ The mole fraction of ethane is ______. The apparent molecular weight of the mixture is ______kg/kmol. The partial pressure of nitrogen is ______kPa. The partial pressure of helium is _____kPa. The partial pressure of methane is _____kPa. The partial…arrow_forwardThe volumetric analysis of a mixture of gases is 25 percent oxygen, 35 percent nitrogen, 5 percent carbon dioxide, and 35 percent methane. Calculate the apparent specific heats and molecular weight of this mixture of gases. The universal gas constant is Ru= 8.314 kJ/kmol-K. Use the table containing the molar mass, gas constant, and critical-point properties and the table containing the ideal-gas specific heats of various common gases. The apparent molecular weight of this mixture of gases is The constant-pressure specific heat of the mixture is The constant-volume specific heat of the mixture is kg/kmol. kJ/kg-K. kJ/kg-K.arrow_forwardThe pressure and temperature of a mixture of equal masses of hydrogen are 120 kPa and 27 degree celcius. The gas constants of hydrogen and oxgen are 4.125 and 0.2598 kJ/kg-K respectively. Calculate the partial pressure of ocygen in Kpa.arrow_forward
- A 0.3-m3 rigid tank contains 0.6 kg of N2 and 0.4 kg of O2 at 300 K. Determine the partial pressure of each gas and the total pressure of the mixturearrow_forwardIn a closed container of constant volume, there is a gas mixture of 10kmol 02 and 20kmol Co2. The pressure and temperature of the mixture are 150 kPa and 300 K, respectively. Calculate the volume of the container wwwarrow_forwardThe gas constant R has the value 287 J/Kg * K for dry air. Using the ideal gas law (P = PdryRT): Find the density of moist air at the same pressure and temperature if the relative humidity is 60%.arrow_forward
- Part A A cylinder contains 3.5 L of oxygen at 340 K and 2.5 atm. The gas is heated, causing a piston in the cylinder to move outward. The heating causes the temperature to rise to 620 K and the volume of the cylinder to increase to 9.4 L. What is the final gas pressure? Express your answer in atmospheres. ΑΣΦarrow_forwardThe air conditioning process in a humifidier, air at a dry bulb temperature of 30 ° C and RH of 15% increases the RH to 50%. Determine the amount of water vapor added in the humifidier per kg of dry air. (Kg water / kg air)arrow_forwardGaseous hydrogen weakens the mechanical strength of cast iron. this phenomenon often occurs in cast iron pressure vessels containing 100% gas hydrogen. H2 gas dissolves in metallic iron and diffuses into solid non-porous iron by an interstitial diffusion mechanism. H2 gas does not need to penetrate far into the iron to have a negative effect on the mechanical strength of iron. In the present situation, 100% of H2 gas at 1.0 atm and 100°C is contained within a 1.0 m internal diameter and wall thickness of 2.0 cm. The solubility of hydrogen in iron in 100°C is 2.2x10-7 mol of H/g Fe atoms. The diffusion coefficient of atoms of hydrogen in solid iron is 124.0x10-9 cm2 /sec at 100°C. Initially, there are no H atoms in solid iron. How many hours will it take for the hydrogen level inside the iron metal reaches 1.76x10-7 mol H atoms/g Fe at a depth of 0.1 cm from the surface exposed to hydrogen gas?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY