Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.3, Problem 2P
The sum of the mole fractions for an ideal-gas mixture is equal to 1. Is this also true for a real-gas mixture?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a rigid container with a volume of 0.4 m3, there is a mixture of 2 kg of liquid-steam at a pressure of 200 kPa. What is the degree of dryness of the liquid - vapor mixture?
Determine the quality of a two-phase mixture of: (a) water at 400°F and a specific volume of 0.55 ft/lbm; (b) R 12 at 350 psia and a specific volume of 0.025 ft³/lbm.
A mixture of 60% Helium and 40% Argon at 300 K and 100 kPa is compressed in a steady-state steady flow to 300 kPa and 520 K. Assume constant specific heats for all processes and real gas mixture (non-ideal gas mixture).
Determine the specific volume of the gas at the compressor exit in m3/kg
Chapter 13 Solutions
Thermodynamics: An Engineering Approach
Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 6PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - Prob. 11PCh. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 18PCh. 13.3 - Prob. 19PCh. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - Prob. 26PCh. 13.3 - Prob. 27PCh. 13.3 - Prob. 28PCh. 13.3 - 13–29 A gas mixture at 350 K and 300 kPa has the...Ch. 13.3 - Prob. 30PCh. 13.3 - Prob. 31PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 33PCh. 13.3 - Prob. 34PCh. 13.3 - Prob. 35PCh. 13.3 - Prob. 36PCh. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 38PCh. 13.3 - Prob. 39PCh. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - Prob. 42PCh. 13.3 - Prob. 43PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 45PCh. 13.3 - Prob. 46PCh. 13.3 - 13–47C Is the total internal energy change of an...Ch. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - Prob. 52PCh. 13.3 - Prob. 53PCh. 13.3 - Prob. 54PCh. 13.3 - Prob. 55PCh. 13.3 - Prob. 56PCh. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - Prob. 59PCh. 13.3 - Prob. 60PCh. 13.3 - Prob. 61PCh. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 64PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 69PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 71PCh. 13.3 - Prob. 72PCh. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 80PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Prob. 83PCh. 13.3 - Prob. 84RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - Prob. 89RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 94RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - 13–102 An ideal-gas mixture consists of 2 kmol of...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 104FEPCh. 13.3 - Prob. 105FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 107FEPCh. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 0.5 kg of Helium and 0.5 kg of nitrogen are mixed at 20°C and at a total pressure of 100 kPa. Find (a) the volume of the mixture (b) the partial volumes of the components (c) the partial pressures of the components (d) the mole fraction of the components (e) the specific heats cp and c, of the mixture and (f) the gas constant of the mixture.arrow_forwardFor a liquid-vapour mixture, which of the following can give us all the properties of the mixture?arrow_forwardA mixture of ideal gases consists of 3 kg of nitrogen and 5 kg of carbon dioxide at a pressure of 300 kPa and a temperature of 20oC. Find (a) the mole fraction of each constituent, (b) the equivalent molecular weight of the mixture, (c) the equivalent gas constant of the mixture, (d) the partial pressures and the partial volumes, (e) the volume and density of the mixture, and (f) the cp and cv of the mixture.If the mixture is heated at constant volume to 40oC, find the changes in internal energy, enthalpy and entropy of the mixture. Find the changes in internal energy, enthalpy and entropy of the mixture if the heating is done at constant pressure.arrow_forward
- Which is the physical property to express deviations of pressure between an ideal mixture and areal gas mixture?arrow_forwardNeed help reveiwing questions. Please explain.arrow_forwardA volume of 0.3 m³ of O₂ at 200 K and 8 MPa is mixed with 0.5 m³ of N₂ at the same temperature and pressure, forming a mixture at 200 K and 8 MPa. Determine the volume of the mixture, using (a) the ideal-gas equation of state, (b) Kay's rule, and (c) the compressibility chart and Amagat's law.arrow_forward
- uestion 4: (a) An 88-litre gas cylinder is filled with propane gas at a pressure of 1.15 MPa and 18°C. The propane is used to fuel a gas burner. After some time, the pressure and temperature are 210 kPa and 23°C respectively. Determine the mass of propane used. The molar mass of propane is 44 g/mole. (b) A piston-cylinder device filled with air at 365 kPa and 12°C, has an initial volume of 1.3 litres. The air is expanded at constant pressure to a volume of 3.6 litres and 516°C. Determine the amount of heat and work involved in this process and state whether the heat and work are into, or out of the gas.arrow_forwardUsing the Clapeyron equation, determine the latent heat of vaporization of saturated Propane. Data: Temperature: 40°F; Pressure: 77.80 psia; Liquid volume: 0.03055 ft3/lbm; Vapor volume: 1.33 ft3/lbm.arrow_forwardThermodynamics questionarrow_forward
- A mixture of gases is assembled by first filling an evacuated 0.39-m3 tank with neon until the pressure is 35 kPa. Oxygen is added next until the pressure increases to 105 kPa. Finally, nitrogen is added until the pressure increases to 140 kPa. During each step of the tank’s filling, the contents are maintained at 60°C. Determine the mass of each constituent in the resulting mixture. The mass of neon is kg. The mass of oxygen is kg. The mass of nitrogen is kg.arrow_forwardExpress the Joule coefficient and the Joule – Thomson coefficient as its value for a Berthelot gas.arrow_forwardQuestion: Express the partial pressure Pi of component i in an ideal-gas mixture in terms of the total pressure P and molar fraction yi of this component. Do the partial pressures in the mixture change when the temperature is changed at constant total pressure? Explain carefullyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY