Thermodynamics: An Engineering Approach
8th Edition
ISBN: 9780073398174
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.3, Problem 48P
To determine
Whether is it required to use the partial pressure of each component or the total pressure of the mixture while evaluating the entropy change of the components of an ideal-gas mixture.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve this correctly
One mole of an ideal monatomic gas, initially at a pressure of 1.29 atm and a volumeof 0.0152 m3, , is heated to a final state wherethe pressure is 6.29 atm and the volume is0.0552 m3.The gas constant is 8.31447 J/mol · K .Determine the change in entropy for this
Hello I need help with the following problem
Chapter 13 Solutions
Thermodynamics: An Engineering Approach
Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 6PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - Prob. 11PCh. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 18PCh. 13.3 - Prob. 19PCh. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - Prob. 26PCh. 13.3 - Prob. 27PCh. 13.3 - Prob. 28PCh. 13.3 - 13–29 A gas mixture at 350 K and 300 kPa has the...Ch. 13.3 - Prob. 30PCh. 13.3 - Prob. 31PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 33PCh. 13.3 - Prob. 34PCh. 13.3 - Prob. 35PCh. 13.3 - Prob. 36PCh. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 38PCh. 13.3 - Prob. 39PCh. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - Prob. 42PCh. 13.3 - Prob. 43PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 45PCh. 13.3 - Prob. 46PCh. 13.3 - 13–47C Is the total internal energy change of an...Ch. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - Prob. 52PCh. 13.3 - Prob. 53PCh. 13.3 - Prob. 54PCh. 13.3 - Prob. 55PCh. 13.3 - Prob. 56PCh. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - Prob. 59PCh. 13.3 - Prob. 60PCh. 13.3 - Prob. 61PCh. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 64PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 69PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 71PCh. 13.3 - Prob. 72PCh. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 80PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Prob. 83PCh. 13.3 - Prob. 84RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - Prob. 89RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 94RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - 13–102 An ideal-gas mixture consists of 2 kmol of...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 104FEPCh. 13.3 - Prob. 105FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 107FEPCh. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question : Determine the units of the quantity s ̄/Ru, where s ̄ is the molar specific entropy and Ru is the universal gas constant. Explain your answer pleasearrow_forwardThermodynamics questionarrow_forwardExpress the Joule coefficient and the Joule – Thomson coefficient as its value for an ideal gas.arrow_forward
- Tank A contains 42 moles of carbon dioxide at 77 ⁰C and 70 kPa. Tank B contains 8 kg of the same gas at 27 ⁰C and 120 kPa. The valve is opened, and the gases are allowed to mix. The heat transfer from the surroundings. The final equilibrium temperature is 42 ⁰C. Using ideal gas equation, determine:arrow_forwardHelp mearrow_forwardA mole sample of liquid ammonia at 273 Kelvin is cooled to liquid ammonia at 240 Kelvin. The process is done irreversibly by placing the sample in liquid nitrogen at 77 Kelvin. The heat capacity relationship for ammonia gas is given below. Assuming that the heat of vaporization is 23.4 KiloJoules per mole, answer the questions that follow. What is the entropy change of this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the entropy change of the surroundings for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the total entropy change (or the entropy of the universe) for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES.arrow_forward
- 12 m3 of moist air at 65% R.H., 32°C, and 100 kPa is compressed to 75% RH in a constant temperature process Determine the final (a) volume (b) pressure (c) the mass of water vapor in air at the end of the process. (a) the work needed to compress the moist air. (e) The change of entropy during the process.arrow_forwardEthane (C2H6) at 20oC and 200kPa and methane (CH4) at 45oC and 200kPa enter an adiabatic mixing chamber. The mass flow rate of ethane is 9kg/s which is twice the mass flow rate of methane .Determine the mixture temperature and pressure. Take the specific heats of C2H6=1.7662kJ/kg K, CH4=2.2537kJ/kg K.arrow_forwardA mixture of 60% Helium and 40% Argon at 300 K and 100 kPa is compressed in a steady-state steady flow to 300 kPa and 520 K. Assume constant specific heats for all processes and real gas mixture (non-ideal gas mixture). Determine the specific volume of the gas at the compressor exit in m3/kgarrow_forward
- 4. (a) Two tanks (A and B) are connected by a valve. Tank A is insulated and contains 1 kg of oxygen at 15°C and 300 kPa. Tank B is uninsulated and of 2m' volume. It contains nitrogen at 50°C and 500 kPa. The valve is opened and the two gases are mixed to form a uniform mixture at 25°C. Determine (i) the final pressure in the tank, (ii) the heat transfer, and (iii) the entropy generated during this process. nd dilated... munifor mixe ara tarrow_forwardAn insulated rigid tank is divided into two compartments by a partition. One compartment contains 7 kg of oxygen gas at 40°C and 100kPa, and the other compartment contains 4 kg of nitrogen gas at 20°C and 150kPa. Now the partition is removed, and the two gases are allowed to mix. Determine:- (a) the mixture temperature and (b) the mixture pressure after equilibrium. CvN2=0.743 kJ/kg K and CvO2 = 0.658 kJ/kg K .arrow_forwardAn equimolar mixture of helium and argon gases is to be used as the working fluid in a closed-loop gas-turbine cycle. The mixture enters the turbine at 2.5 MPa and 1100 K and expands isentropically to a pressure of 200 kPa. Determine the work output of the turbine per unit mass of the mixture. Use the table containing the molar mass, gas constant, and critical-point properties and the table containing the ideal-gas specific heats of various common gases. 2.5 MPa He - Ar turbine 200 kPa W The work output of the turbine per unit mass of the mixture is kJ/kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Lesson 2: Thermodynamic Properties; Author: The Thermo Sage;https://www.youtube.com/watch?v=qA-xwgliPAc;License: Standard Youtube License