Concept explainers
(a)
The volume flow rate of the mixture using the ideal gas mixture.
The mass flow rate of the mixture using the ideal gas mixture.
(a)
Answer to Problem 45P
The volume flow rate of the mixture using the ideal gas mixture is
The mass flow rate of the mixture using the ideal gas mixture is
Explanation of Solution
Refer to Table A-1E, Obtain the molar masses of
Consider 100 lbmol of the mixture. Since the volume fractions are equal to the mole fractions, calculate the mass of each component.
Here, the mole numbers of
Write the equation of total mass of the mixture.
Here, the mass of
Write the equation to calculate the apparent molecular weight of the mixture.
Write the equation to calculate the apparent gas constant of the mixture.
Here, the universal gas constant is
Write the equation of specific volume of the mixture.
Here, temperature of the mixture is T and atmospheric pressure is P.
Calculate the volume flow rate of the mixture.
Here, cross-sectional area of the pipe is A.
Calculate the mass flow rate of the mixture.
Conclusion:
Apply spreadsheet and substitute the given values of mole numbers and molar masses of
S.No | masses | Mole number (N), lbmol | Molar masses (M), lbm/lbmol | |
1 | 30 | 32 | 960 | |
2 | 40 | 28 | 1120 | |
3 | 10 | 44 | 440 | |
4 | 20 | 16 | 320 |
Substitute 960 lbm for
Substitute 2840 lbm for
Substitute
Substitute
Substitute
Thus, the volume flow rate of the mixture using the ideal gas mixture is
Substitute
Thus, the mass flow rate of the mixture using the ideal gas mixture is
(b)
The volume flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
The mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
(b)
Answer to Problem 45P
The volume flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
The mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
Explanation of Solution
Write the equation of reduced temperatures and pressures of
Here, the critical temperature of
Write the equation of compressibility factor of the mixture.
Here, the mole fraction of
Calculate the specific volume of the mixture.
Calculate the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
Here, the volume flow rate of mixture using the compressibility factor based on Amagat’s law of additive volumes is
Conclusion:
Refer to Table A-1E, obtain the critical temperatures and pressures of
Substitute 530 R for
Refer to Figure A-15, obtain the compressibility factor for
Substitute 0.30 for
Substitute 1500 psia for P, 0.869 for
Refer to part (a), the value calculated for volume flow rate is
Substitute
Thus, the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
(c)
The volume flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
The mass flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
(c)
Answer to Problem 45P
The volume flow rate of the mixture using Kay’s pseudocritical pressure and temperature is
The mass flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
is
Explanation of Solution
Write the critical temperature of a gas mixture.
Write the critical pressure of a gas mixture.
Write the equation of reduced temperature and pressure.
Conclusion:
Substitute 0.30 for
Substitute 0.30 for
Substitute 530 R for
Refer to Figure A-15, obtain the compressibility factor for gas mixture by reading the values of
Substitute 1500 psia for P, 0.915 for
Refer to part (a), the value calculated for volume flow rate is
Substitute
Thus, the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
Want to see more full solutions like this?
Chapter 13 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- Ashaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forwardchanism shown in figure below, the crank OA rotates at 60 RPM counterclockwise. The velocity diagram is also drawn to scale (take dimensions from space diagram). Knowing that QCD is rigid plate, determine: a. Linear acceleration of slider at B, b. Angular acceleration of the links AC, plate CQD, and BD. D Space Diagram Scale 1:10 A ES a o,p,g b Velocity Diagram Scale 50 mm/(m/s) darrow_forwardA thick closed cylinder, 100 mm inner diameter and 200 mm outer diameter is subjected to an internal pressure of 230 MPa and outer pressure of 70 MPa. Modulus of elasticity, E=200 GPa. and Poisson's ratio is 0.3, determine: i) The maximum hoop stress ii) The maximum shear stress iii) The new dimension of the outer diameter due to these inner and outer pressures.arrow_forward
- A ә レ shaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNm 20,000 10,000 495 Crank angle 8 degrees 270 0 90 か ---20125 750 X 2.01 44 720 sarrow_forwardThe gas tank is made from A-36 steel (σy = 250 MPa) and has an inner diameter of 3.50 m. If the tank is designed to withstand a pressure of 1.2 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) The maximum-shear-stress theory (b) Maximum distortion- energy theory. Apply a factor of safety of 1.5 against yielding.arrow_forwardә レ Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A A B # Space Diagram o NTS (Not-to-Scale) C 10 =--20125 735) 750 x2.01 اهarrow_forward
- 2 レ Tanism in which the link OA mm. O anticlockwise direction at 10 rad/s, the lengths of the various links are OA=75mm, OB=150mm, BC=150mm,CD=300mm. Determine for the position shown, the sliding velocity of D. A A Space Diagram o NT$ (Not-to-Scale) B # C か 750 x2.01 165 79622arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forwardFigure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forward
- motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forwardAn ideal gas, occupying a volume of 0.02 m3 , has a temperature of 25 0C and is at 1.2 bar. The gas is compressed reversibly and adiabatically to a final pressure of 8 bar. Assuming the gas has an adiabatic index of γ = 1.4, calculate (a) the final temperature, (b) the final volume, (c) the work performed during the compression and (d) the heat transferred.arrow_forwardattached is a past paper question in which we werent given the solution. a solution with clear steps and justification would be massively appreciated thankyou.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY