
Concept explainers
(a)
The volume flow rate of the mixture using the ideal gas mixture.
The mass flow rate of the mixture using the ideal gas mixture.
(a)

Answer to Problem 45P
The volume flow rate of the mixture using the ideal gas mixture is
The mass flow rate of the mixture using the ideal gas mixture is
Explanation of Solution
Refer to Table A-1E, Obtain the molar masses of
Consider 100 lbmol of the mixture. Since the volume fractions are equal to the mole fractions, calculate the mass of each component.
Here, the mole numbers of
Write the equation of total mass of the mixture.
Here, the mass of
Write the equation to calculate the apparent molecular weight of the mixture.
Write the equation to calculate the apparent gas constant of the mixture.
Here, the universal gas constant is
Write the equation of specific volume of the mixture.
Here, temperature of the mixture is T and atmospheric pressure is P.
Calculate the volume flow rate of the mixture.
Here, cross-sectional area of the pipe is A.
Calculate the mass flow rate of the mixture.
Conclusion:
Apply spreadsheet and substitute the given values of mole numbers and molar masses of
S.No | masses | Mole number (N), lbmol | Molar masses (M), lbm/lbmol | |
1 | 30 | 32 | 960 | |
2 | 40 | 28 | 1120 | |
3 | 10 | 44 | 440 | |
4 | 20 | 16 | 320 |
Substitute 960 lbm for
Substitute 2840 lbm for
Substitute
Substitute
Substitute
Thus, the volume flow rate of the mixture using the ideal gas mixture is
Substitute
Thus, the mass flow rate of the mixture using the ideal gas mixture is
(b)
The volume flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
The mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
(b)

Answer to Problem 45P
The volume flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
The mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
Explanation of Solution
Write the equation of reduced temperatures and pressures of
Here, the critical temperature of
Write the equation of compressibility factor of the mixture.
Here, the mole fraction of
Calculate the specific volume of the mixture.
Calculate the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes.
Here, the volume flow rate of mixture using the compressibility factor based on Amagat’s law of additive volumes is
Conclusion:
Refer to Table A-1E, obtain the critical temperatures and pressures of
Substitute 530 R for
Refer to Figure A-15, obtain the compressibility factor for
Substitute 0.30 for
Substitute 1500 psia for P, 0.869 for
Refer to part (a), the value calculated for volume flow rate is
Substitute
Thus, the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
(c)
The volume flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
The mass flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
(c)

Answer to Problem 45P
The volume flow rate of the mixture using Kay’s pseudocritical pressure and temperature is
The mass flow rate of the mixture using Kay’s pseudocritical pressure and temperature.
is
Explanation of Solution
Write the critical temperature of a gas mixture.
Write the critical pressure of a gas mixture.
Write the equation of reduced temperature and pressure.
Conclusion:
Substitute 0.30 for
Substitute 0.30 for
Substitute 530 R for
Refer to Figure A-15, obtain the compressibility factor for gas mixture by reading the values of
Substitute 1500 psia for P, 0.915 for
Refer to part (a), the value calculated for volume flow rate is
Substitute
Thus, the mass flow rate of the mixture using the compressibility factor based on Amagat’s law of additive volumes is
Want to see more full solutions like this?
Chapter 13 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- (Read image)arrow_forward(Read Image)arrow_forwardM16x2 grade 8.8 bolts No. 25 C1- Q.2. The figure is a cross section of a grade 25 cast-iron pressure vessel. A total of N, M16x2.0 grade 8.8 bolts are to be used to resist a separating force of 160 kN. (a) Determine ks, km, and C. (b) Find the number of bolts required for a load factor of 2 where the bolts may be reused when the joint 19 mm is taken apart. (c) with the number of bolts obtained in (b), determine the realized load factor for overload, the yielding factor of safety, and the separation factor of safety. 19 mmarrow_forward
- Problem4. The thin uniform disk of mass m = 1-kg and radius R = 0.1m spins about the bent shaft OG with the angular speed w2 = 20 rad/s. At the same time, the shaft rotates about the z-axis with the angular speed 001 = 10 rad/s. The angle between the bent portion of the shaft and the z-axis is ẞ = 35°. The mass of the shaft is negligible compared to the mass of the disk. a. Find the angular momentum of the disk with respect to point G, based on the axis orientation as shown. Include an MVD in your solution. b. Find the angular momentum of the disk with respect to point O, based on the axis orientation as shown. (Note: O is NOT the center of fixed-point rotation.) c. Find the kinetic energy of the assembly. z R R 002 2R x Answer: H = -0.046ĵ-0.040 kg-m²/sec Ho=-0.146-0.015 kg-m²/sec T 0.518 N-m =arrow_forwardProblem 3. The assembly shown consists of a solid sphere of mass m and the uniform slender rod of the same mass, both of which are welded to the shaft. The assembly is rotating with angular velocity w at a particular moment. Find the angular momentum with respect to point O, in terms of the axes shown. Answer: Ñ。 = ½mc²wcosßsinßĵ + (}{mr²w + 2mb²w + ½ mc²wcos²ß) k 3 m r b 2 C لا marrow_forwardOnly question 2arrow_forward
- Only question 1arrow_forwardOnly question 3arrow_forwardI have Euler parameters that describe the orientation of N relative to Q, e = -0.7071*n3, e4 = 0.7071. I have Euler parameters that describe the orientation of U relative to N, e = -1/sqrt(3)*n1, e4 = sqrt(2/3). After using euler parameter rule of successive rotations, I get euler parameters that describe the orientation of U relative to Q, e = -0.4082*n1 - 0.4082*n2 - 0.5774*n3. I need euler parameters that describe the orientation of U relative to Q in vector basis of q instead of n. How do I get that?arrow_forward
- Describe at least 4 processes in engineering where control charts are (or should be) appliedarrow_forwardDescribe at least two (2) processes where control charts are (or should be) applied.arrow_forwardProblem 3: A cube-shaped spacecraft is in a circular Earth orbit. Let N (n,) be inertial and the spacecraft is denoted S (ŝ₁). The spacecraft is described such that ¯½º = J ŝ₁ŝ₁ + J ŝ₂§₂ + J §¸Ŝ3 Location of the spacecraft in the orbit is determined by the orbit-fixed unit vectors ê, that are oriented by the angle (Qt), where is a constant angular rate. 52 €3 3> 2t 55 Λ Из At the instant when Qt = 90°, the spacecraft S is oriented relative to the orbit such that 8₁ = 0° Space-three 1-2-3 angles 0₂ = 60° and ES = $₂ rad/s 0₁ = 135° (a) At this instant, determine the direction cosine matrix that describes the orientation of the spacecraft with respect to the inertial frame N.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





