THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.3, Problem 69P
To determine
Compare the thermal efficiency of the cycle from problem 13-68P with the predicted by air standard analysis.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 2 MW Diesel engine consumes 1 bbl (42 gallons) of industrial fuel of 25 0API at 27 oC in one
day operation. Calculate the amount of heat liberated by the fuel as a result of combustion.
Air and fuel enter a furnace used for home heating. The air has an enthalpy
of 302 kJ/kg and the fuel an enthalpy of 43 027 kJ/kg. The gases leaving the
furnace have an enthalpy of 616 kJ/kg. There are 17 kg air/kg fuel. Water
circulates through the furnace wall receiving heat. The house requires 17.6
kW of heat. What is the fuel consumption per day?
Determine the quantity of heat required to generate one kg of steam at a pressure of7 bar from water at temperature of 25°C, when(a) The dryness fraction is 0.88(b) Steam is just dry(c) It is superheated at constant pressure to 270°C, assuming mean specific heat ofsuperheated steam to be 2.5 kJ/kg K.
Chapter 13 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 13.3 - What are mass and mole fractions?Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 7PCh. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - A gas mixture consists of 20 percent O2, 30...Ch. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - Prob. 18PCh. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Prob. 22PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Prob. 24PCh. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - A gas mixture at 300 K and 200 kPa consists of 1...Ch. 13.3 - Prob. 29PCh. 13.3 - Separation units often use membranes, absorbers,...Ch. 13.3 - Prob. 31PCh. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - An engineer has proposed mixing extra oxygen with...Ch. 13.3 - A rigid tank contains 0.5 kmol of Ar and 2 kmol of...Ch. 13.3 - A mixture of gases consists of 0.9 kg of oxygen,...Ch. 13.3 - Prob. 37PCh. 13.3 - One pound-mass of a gas whose density is 0.001...Ch. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 43PCh. 13.3 - Prob. 44PCh. 13.3 - Prob. 45PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 47PCh. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - Prob. 50PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - A mixture of nitrogen and carbon dioxide has a...Ch. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - A mixture of gases consists of 0.1 kg of oxygen, 1...Ch. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - An insulated rigid tank is divided into two...Ch. 13.3 - Prob. 59PCh. 13.3 - A mixture of 65 percent N2 and 35 percent CO2...Ch. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 68PCh. 13.3 - Prob. 69PCh. 13.3 - The gas passing through the turbine of a simple...Ch. 13.3 - Prob. 71PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 79PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Is it possible for an adiabatic liquid-vapor...Ch. 13.3 - Prob. 84PCh. 13.3 - Prob. 85RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - A mixture of gases is assembled by first filling...Ch. 13.3 - Prob. 90RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 95RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - Prob. 101RPCh. 13.3 - Prob. 102FEPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 105FEPCh. 13.3 - Prob. 106FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEPCh. 13.3 - Prob. 111FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is entropy and its application?arrow_forwardWhy am I not getting this right , am I doing a calculation wrong for the final answer (m=q2 x h1-h2=8470 x 2684.9-943.62=22740159.38 ) ? A boiler furnace releases 11 000 kJ of heat for each kg of fuel burned and produces dry saturated steam at 12 000 kPa from feedwater at 220°C. How many kg of steam will be produced for each kg of fuel burned if the boiler had an efficiency of 77%?. heat generated by burning 1 kg of fuel , q1=11000 kj/kg heat used to boil water by burning 1kg of fuel ; q2=q1x difference fraction=11000x0.77=8470 kj from steam tables: enthalpy of saturated steam @ 12000 kpa , h1=2684.9 kj/kg enthalpy of water @ 220 degrees celcius=943.62 mass of steam produced by burning 1 kg of fuel ; m=q2 x h1-h2=8470 x 2684.9-943.62=22740159.38arrow_forwardCalculate the entropy changes of the system and surrounding for the case of isothermal freezing of one mole of supercooled liquid silver at 804°C, when the surrounding are also at the same temperature.arrow_forward
- air at 10 C DBT and 50% RH and a barometric pressure of 95kPa enters a heating coil at 0.5 m^3/s. If he air leaving the coil should be at 50 C DBT and 40 C WBT, the coil heating capacity and the water vapor added to the air are 14 54.572 kW, 0.102 kg/s 24.257 kW, 0.0095 kg/s 79.023 kW, 0.0917 kg/s 89.631 kW, 0.0254 kg/s 63.054 kW, 0.011 kg/s O O O O oarrow_forwardA mole sample of liquid ammonia at 273 Kelvin is cooled to liquid ammonia at 240 Kelvin. The process is done irreversibly by placing the sample in liquid nitrogen at 77 Kelvin. The heat capacity relationship for ammonia gas is given below. Assuming that the heat of vaporization is 23.4 KiloJoules per mole, answer the questions that follow. What is the entropy change of this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the entropy change of the surroundings for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the total entropy change (or the entropy of the universe) for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES.arrow_forwardAn aluminum ball of 5 cm diameter and a temperature of 95 deg C is being immersed into a mixture of 3.8 kg ethanol of 25degC and a 5.4 kg water of 70deg.C. Given the specific heat capacity of ethanol at constant pressure to be 2.57 kJ/kg.K and that of aluminum to be 0.902 J/g . K. Calculate the entropy change that occurs in these three substances.arrow_forward
- Two Boxes, Box A contains 1 kg of gas #1 initially at T=T, and Box B contains 1 kg of gas #2 initially (11/3)T,- A,i at T B,i The two boxes are put in thermal contact with each other allowing heat transfer flow from the hotter box until they reach a comтоп final tетрerature T. Knowing that the specific heat ratio [c/cR-(5/3)| what will be v,B the final temperature?arrow_forwardAnswer the following questions: a and b (B is important)arrow_forwardAir and fuel enter a furnace used for home heating. The air has an enthalpy of 302 KJ/kg and the fuel has an enthalpy of 43207 KJ/kg. The gas leaving the furnace have an enthalpy of 616 KJ/kg. There are 17 kg air /kg fuel. The house requires 17.6 KW of heat. What is the fuel consumption per day?arrow_forward
- A thermal plant utilizes 125 gallons of 28oAPI fuel at 26oC in 24 hours while the power guarantee for the same period amounts to 2300 kW-hrs. Determine the thermal efficiency of the plant.arrow_forwardThe air conditions at the intake of an air compressor are 33 C, 50 percent relativehumidity, and 101 kPa. The air is compressed to 400 kPa, then sent to anintercooler. If condensation of water vapor from the compressed air is to beprevented, what is the minimum temperature (tdp) to which the air can be cooled inthe intercooler?Use theoretical calculation for this problem.arrow_forwardA steam at 169.06 kPa of 90% quality is used to concentrate tomato juice to puree.The specific heats of tomato juice before and after evaporation are 3.89 and 3.45kJ/kg-K. The specific heat of the solid content of tomato juice is 2.67 kJ/kg-K andthe mass flow rate of juice at the feeding section is 2.1 kg/s. What will be the exittemperature of the juice? Assume that the steam after heat exchange exits aspure liquid.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License