THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.3, Problem 11P
A gas mixture consists of 20 percent O2, 30 percent N2, and 50 percent CO2 on mass basis. Determine the volumetric analysis of the mixture and the apparent gas constant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(9) Figure Q9 shows a 2 m long symmetric I beam where the upper and lower sections are 2X wide and the middle section is X wide, where X
is 31 mm. The I beam sections are all Y=33 mm in depth. The beam is loaded in the middle with a load of Z=39 kN causing reaction forces at
either end of the beam's supports.
What is the maximum (positive) bending stress experienced in the beam in terms of mega-Pascals?
State your answer to the nearest whole number.
Y mm
Y mm
Y mm
Xmm
2X mm
Figure Q9
Z KN
2 m
(5) Figure Q5 shows a beam which rests on two pivots at positions A and C (as illustrated below). The beam is loaded with a UDL of 100 kN/m
spanning from position B and ending at position D (as illustrated). The start location of B is Y=1.2 m from A. The total span of the UDL is
twice the length of Z, where Z=2.2 m.
What is the bending moment value at position X=2.5 m, (using the convention given to you in the module's formula book).
State your answer in terms of kilo-Newton-metres to 1 decimal place.
Bending Moment
Value?
UDL = 100 kN/m
A
Ym
X = ?
B
Zm
Figure Q5
C
*
Zm
D
You are required to state your answer in millimetres to the nearest whole number.
30 mm
30 mm
A. No Valid Answer
B. 27
○ C. 26
O D.33
○ E. 34
30 mm
50 mm
Figure Q14
1m
Chapter 13 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 13.3 - What are mass and mole fractions?Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 7PCh. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - A gas mixture consists of 20 percent O2, 30...Ch. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - Prob. 18PCh. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Prob. 22PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Prob. 24PCh. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - A gas mixture at 300 K and 200 kPa consists of 1...Ch. 13.3 - Prob. 29PCh. 13.3 - Separation units often use membranes, absorbers,...Ch. 13.3 - Prob. 31PCh. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - An engineer has proposed mixing extra oxygen with...Ch. 13.3 - A rigid tank contains 0.5 kmol of Ar and 2 kmol of...Ch. 13.3 - A mixture of gases consists of 0.9 kg of oxygen,...Ch. 13.3 - Prob. 37PCh. 13.3 - One pound-mass of a gas whose density is 0.001...Ch. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 43PCh. 13.3 - Prob. 44PCh. 13.3 - Prob. 45PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 47PCh. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - Prob. 50PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - A mixture of nitrogen and carbon dioxide has a...Ch. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - A mixture of gases consists of 0.1 kg of oxygen, 1...Ch. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - An insulated rigid tank is divided into two...Ch. 13.3 - Prob. 59PCh. 13.3 - A mixture of 65 percent N2 and 35 percent CO2...Ch. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 68PCh. 13.3 - Prob. 69PCh. 13.3 - The gas passing through the turbine of a simple...Ch. 13.3 - Prob. 71PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 79PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Is it possible for an adiabatic liquid-vapor...Ch. 13.3 - Prob. 84PCh. 13.3 - Prob. 85RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - A mixture of gases is assembled by first filling...Ch. 13.3 - Prob. 90RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 95RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - Prob. 101RPCh. 13.3 - Prob. 102FEPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 105FEPCh. 13.3 - Prob. 106FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEPCh. 13.3 - Prob. 111FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A beam supports a uniform load and an axial load P = 30 kips. If the maximum allowable tensile stress in the beam is 24 ksi and a maximum allowable compressive stress is 20 ksi, what uniform load can the beam support? Assume P passes through the centroid of the section.arrow_forwardBending Moment Value? 40 kN 100 kN 100 kN 100 kN 40 kN A B C D E Ym Zm Zm Ym X = ?arrow_forward(4) Figure Q4 shows a symmetrically loaded beam. The beam is loaded at position A (x = 0 m) and the end of the beam at position E with 30 kN. There is an additional load of 101 kN both at position B (Y = 0.87 m), in the middle at C and at position D. The middle section is 2Z, where Z = 0.82 m). Given that the reaction forces at RB and RD both equal 180 kN, calculate the Bending Moment value (using the convention given to you in the module's formula book) at a position of x=2.30m. State your answer in terms of kilo-Newton-metres to one decimal place. Bending Moment Value? 40 kN 100 kN 100 kN 100 kN 40 kN B D E Ym Zm Zm Ym X = ? Figure Q4arrow_forward
- (8) Figure Q8 shows a T cross-section of a T beam which is constructed from three metal plates each having a width of 12 mm and sectional engths of X=72 mm, Y=65 mm and Z=88 mm, where the plates are used for the web section, and the two flange sections respectively, as llustrated in Figure Q8. Calculate the neutral axis of the T-beam cross-section (as measured from the base) in units of millimetres, stating your answer to the nearest 1 decimal place. Z mm Y mm 12 mm X mm Figure Q8 12 mm 12 mmarrow_forward(10) A regular cross-section XXY mm beam, where X-94 m and Y=62 m and 1800 mm long, is loaded from above in the middle with a load of Z=2 kN causing a compressive Bending Stress at the top of the beam and tensile Bending Stress at the bottom of the beam. The beam in addition experiences a tensile end loading in order to reduce the compressive stress in the beam to a near zero value. The configuration of the beam is illustrated in Figure Q10. Calculate the end loading force required in order to reduce total compressive stress experienced in the beam to be near zero? State your answer to the nearest 1 decimal place in terms of kilo-Newtons. Z kN Y mm 1800 mm X mm ? KN Figure Q10 ? KNarrow_forward(12) Figure Q12 shows a framework consisting of 3 upward pointing isosceles triangles and 2 downward pointing isosceles triangles. The framework is loaded at joint F with a downward force of 20 kN. The applied force causes a vertical reaction force at A and D. The design of the framework is such that horizontal base of the isosceles triangles form an angle of 30° degrees with the diagonal members. You are asked to find the internal force in member AE in kilo-Newtons to 1 decimal place (using the standard sign convention given in the module formula booklet)? Select the valid option from the list below. E F S 20 kN RAX = ?? KN 30° 30° 30° 30° 30° 30° A H H B D RAV = ?? KN Roy = ?? KN A. The solution to the problem is found to be -20.0 kN. ○ B. The solution to the problem is found to be -10.0 kN. ○ C. The solution to the problem is found to be +11.5 kN. OD. The solution to the problem is found to be +23.1 kN. O E. No Valid Answerarrow_forward
- (14) An inverted T beam is constructed from a top square cross-section section and a bottom rectangular cross-section of the same length. The cross-section dimensions of the sections are as follows: - Top Square Section 30 mm x 30 mm (width x depth) Bottom Rectangular Section 50 mm x 30 mm Figure Q14 shows the cross-section arrangement of the plates. Given that compression and tension behave the same in terms of stress analysis. Calculate the distance, Ymax, you would use to calculate a safe bending stress value for further analysis. You are required to state your answer in millimetres to the nearest whole number. 30 mm 30 mm O O A. 34 B. 26 O c. 33 D.27 ○ E. No Valid Answer 30 mm 50 mm Figure Q14 1marrow_forward(15) A block of metal with a Young's Modulus of E=200 GPa and Poisson's ratio of 0.3, has dimensions of 38 mm × 20 mm x 80 mm for the lengths X, Y and Z respectively as illustrated in Figure Q15. The block experiences a tensile force in the x-direction of 100 kN and also an applied tensile force in the z-direction of 200 kN as illustrated in Figure Q15. Calculate the strain experienced in the x-direction in terms of micro-strain. Stating your answer to the nearest whole number. 100 kN 200 kN X=38 mm Y = 20 mm ○ A.-188 microstrain OB. -82 microstrain ○ c. no valid answer OD. +83 microstrain ○ E. -187 microstrain Z Figure Q15 200 kN Z = 80 mm 100 kN y Xarrow_forwardFigure Q3 shows a symmetrically loaded beam, loaded with a single Uniform Distributed Load (UDL) starting from the leftmost position A (x = 0 m) ending at the end of the beam at the rightmost position D. The UDL has loading case of 10 kN/m, see Figure Q3 for the start and end positions. There are two symmetrically located pivots causing reaction forces of RB at position B (Y = 1.3 m) and RC at position C. The central section of the beam spans for 2.4 m. Calculate the Shear Force value at a position of X=1.9 m. State your answer in kilo-Newtons to one decimal place.arrow_forward
- (6) An I beam that is Z=685 mm long has a symmetric cross-section shown in Figure Q6. The lower and upper sections are 2Y wide and the middle section of the I beam is Y wide, where Y=44 mm wide. All three sections have a depth of 44mm, as illustrated in Figure Q6. The I beam is pulled apart by a force of X=32 kN. What is the maximum stress experienced in the shaft in terms of mega-Pascals. State your answer to 1 decimal place. Y mm F = X KN Y mm Y mm Y mm 2Y mm Z mm Figure Q6 F= X KNarrow_forward(7) A solid shaft of diameter X=18 mm and length of Y=1.4 m experiences torque using a short rod that is Z=520 mm long and is fixed at the open end of shaft experiencing the torque. The torque is created with the application of a 760 N perpendicular force. The set-up is illustrated below in Figure Q7. Given the shaft has a shear modulus of 70 GPa, calculate the angle of twist in terms of degrees? State your answer to the nearest whole number. Ym Figure Q7 X mm 750 NA Z mmarrow_forwardCalculate the strain experienced in the x-direction in terms of micro-strain. Stating your answer to the nearest whole number. 100 kN 200 kN X=38 mm A. +83 microstrain B. no valid answer ○ C.-187 microstrain ○ D.-82 microstrain OE. -188 microstrain Y = 20 mm Z Figure Q15 200 kN Z = 80 mm 100 kN y Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY