Concept explainers
Predict/Calculate A 3.2-kg mass on a spring oscillates as shown in the displacement-versus-time graph in Figure 13-41. (a) Referring to the graph, at what times between t = 0 and t = 6.0 s does the mass experience a force of maximum magnitude? Explain. (b) Calculate the magnitude of the maximum force exerted on the mass. (c) At what times shown in the graph does the mass experience zero force? Explain. (d) How much force is exerted on the mass at the time t = 0.50 s?
Figure 13-41 Problems 85 and 86
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
Chemistry: Structure and Properties (2nd Edition)
Microbiology: An Introduction
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- A mass is placed on a frictionless, horizontal table. A spring (k=100N/m) , which can be stretched or compressed, is placed on the table. A 5.00-kg mass is attached to one end of the spring, the other end is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x=4.0 cm and releases it from rest. The mass oscillates in SHM. (a) Determine the equations of motion. (b) Find the position, velocity, and acceleration of the mass at time t=3.00 s.arrow_forwardEngineering Application Near the top of the Citigroup Center building in New York City, there is an object with mass of 4.00105kg on springs that have adjustable force constants. Its function is to dampen wind—driven oscillations of the building by oscillating at the same frequency as the building is being driven—the driving force is transferred to the object, which oscillates instead of the entire building. (a) What effective force constant should the springs have to make the object oscillate with a period of 2.00 s? (b) What energy is stored in the springs for a 2.00-m displacement from equilibrium?arrow_forwardIt is important for astronauts in space to monitor their body weight. In Earth orbit, a simple scale only reads an apparent weight of zero, so another method is needed. NASA developed the body mass measuring device (BMMD) for Skylab astronauts. The BMMD is a spring-mounted chair that oscillates in simple harmonic motion (Fig. P16.23). From the period of the motion, the mass of the astronaut can be calculated. In a typical system, the chair has a period of oscillation of 0.901 s when empty. The spring constant is 606 N/m. When a certain astronaut sits in the chair, the period of oscillation increases to 2.37 s. Determine the mass of the astronaut. FIGURE P16.23arrow_forward
- A block with mass m = 0.1 kg oscillates with amplitude .A = 0.1 in at the end of a spring with force constant k = 10 N/m on a frictionless, horizontal surface. Rank the periods of the following situations from greatest to smallest. If any periods are equal, show their equality in your tanking, (a) The system is as described above, (b) The system is as described in situation (a) except the amplitude is 0.2 m. (c) The situation is as described in situation (a) except the mass is 0.2 kg. (d) The situation is as described in situation (a) except the spring has force constant 20 N/m. (e) A small resistive force makes the motion underdamped.arrow_forwardThe mechanical energy of an undamped block-spring system is constant as kinetic energy transforms to elastic potential energy and vice versa. For comparison, explain what happens to the energy of a damped oscillator in terms of the mechanical, potential, and kinetic energies.arrow_forwardReview. A lobstermans buoy is a solid wooden cylinder of radius r and mass M. It is weighted at one end so that it floats upright in calm seawater, having density . A passing shark tugs on the slack rope mooring the buoy to a lobster trap, pulling the buoy down a distance x from its equilibrium position and releasing it. (a) Show that the buoy will execute simple harmonic motion if the resistive effects of the water are ignored. (b) Determine the period of the oscillations.arrow_forward
- Consider the damped oscillator illustrated in Figure 15.19. The mass of the object is 375 g, the spring constant is 100 N/m, and b = 0.100 N s/m. (a) Over what time interval does the amplitude drop to half its initial value? (b) What If? Over what time interval does the mechanical energy drop to half its initial value? (c) Show that, in general, the fractional rate at which the amplitude decreases in a damped harmonic oscillator is one-half the fractional rate at which the mechanical energy decreases.arrow_forwardSome people modify cars to be much closer to the ground than when manufactured. Should they install stiffer springs? Explain your answer.arrow_forwardA blockspring system oscillates with an amplitude of 3.50 cm. The spring constant is 250 N/m and the mass of the block is 0.500 kg. Determine (a) the mechanical energy of the system, (b) the maximum speed of the block, and (c) the maximum acceleration.arrow_forward
- In an engine, a piston oscillates with simpler harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = O. find (a) the position of the particle, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardA horizontal spring attached to a wall has a force constant of 850 N/m. A block of mass 1.00 kg is attached to the spring and oscillates freely on a horizontal, frictionless surface as in Figure 5.22. The initial goal of this problem is to find the velocity at the equilibrium point after the block is released. (a) What objects constitute the system, and through what forces do they interact? (b) What are the two points of interest? (c) Find the energy stored in the spring when the mass is stretched 6.00 cm from equilibrium and again when the mass passes through equilibrium after being released from rest. (d) Write the conservation of energy equation for this situation and solve it for the speed of the mass as it passes equilibrium. Substitute to obtain a numerical value. (e) What is the speed at the halfway point? Why isnt it half the speed at equilibrium?arrow_forwardFigure P13.74 shows a crude model of an insect wing. The mass m represents the entire mass of the wing, which pivots about the fulcrum F. The spring represents the surrounding connective tissue. Motion of the wing corresponds to vibration of the spring. Suppose the mass of the wing is 0.30 g and the effective spring constant of the tissue is 4.7 104 N/m. If the mass m moves up and down a distance of 2.0 mm from its position of equilibrium, what is the maximum speed of the outer tip of the wing? Figure P13.74arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning