Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 39PCE
Find the periods of block 1 and block 2 in Figure 13-34, given that k = 49.2 N/m and m = 1.25 kg.
Figure 13-34 Problems 35 and 39
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an oscillatory motion of a simple pendulum, the ratio of the maximum angular
acceleration, e"max, to the maximum angular velocity, O'max, is t s^(-1). What is
the time needed for the pendulum to complete two oscillations?
0.25 sec
O 1 sec
O 0.5 sec
O 2 sec
4 sec
nring ef spring constant k. The block
In an oscillatory motion of a simple
pendulum, the ratio of the maximum
angular acceleration, O"max, to the
maximum angular velocity, O'max, is Tt
s^(-1). What is the time needed for the
pendulum to complete two oscillations?
4 sec
1 sec
0.5 sec
2 sec
0.25 sec
O 0.15 sec
In an oscillatory motion of a simple pendulum, the ratio of the maximum angular
acceleration, O"max, to the maximum angular velocity, O'max, is Tt s^(-1). What is
the time needed for the pendulum to complete two oscillations?
O 1 sec
O 2 sec
O 4 sec
O 0.5 sec
O 0.25 sec
Chapter 13 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 13.1 - If the frequency of an oscillator is halved, by...Ch. 13.2 - Prob. 2EYUCh. 13.3 - An object moves with simple harmonic motion about...Ch. 13.4 - Rank the four massspring systems in Figure 13-15...Ch. 13.5 - The total mechanical energy of an ideal...Ch. 13.6 - Rank the four pendulum systems in Figure 13-25 in...Ch. 13.7 - The amplitude of a damped oscillation decreases...Ch. 13.8 - When you drive a pendulum at a frequency f1, you...Ch. 13 - A basketball player dribbles a ball with a steady...Ch. 13 - A person rides on a Ferris wheel that rotates with...
Ch. 13 - An air-track cart bounces back and forth between...Ch. 13 - If a mass m and a mass 2m oscillate on identical...Ch. 13 - An object oscillating with simple harmonic motion...Ch. 13 - The position of an object undergoing simple...Ch. 13 - The pendulum bob in Figure 13-18 leaks sand onto...Ch. 13 - A person in a rocking chair completes 12 cycles in...Ch. 13 - While fishing for catfish, a fisherman suddenly...Ch. 13 - If you dribble a basketball with a frequency of...Ch. 13 - You take your pulse and observe 74 heartbeats in a...Ch. 13 - BIO Slow-Motion Dragonfly A frame-by-frame...Ch. 13 - Predict/Calculate (a) Your heart beats with a...Ch. 13 - You rev your cars engine to 3300 rpm (rev/min)....Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - A position-versus-time plot for an object...Ch. 13 - A mass on a spring oscillates with simple harmonic...Ch. 13 - A mass oscillates on a spring with a period of...Ch. 13 - Predict/Calculate Molecular Oscillations An atom...Ch. 13 - A mass oscillates on a spring with a period T and...Ch. 13 - The position of a mass on a spring is given by x =...Ch. 13 - Predict/Calculate A mass attached to a spring...Ch. 13 - A lawn sprinkler oscillates with simple harmonic...Ch. 13 - A ball rolls on a circular track of radius 0.62 m...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - A child rocks back and forth on a porch swing with...Ch. 13 - Predict/Calculate A 30.0-g goldfinch lands on a...Ch. 13 - BIO Tuning Forks in Neurology Tuning forks are...Ch. 13 - A vibrating structural beam in a spacecraft can...Ch. 13 - A peg on a turntable moves with a constant...Ch. 13 - The pistons in an internal combustion engine...Ch. 13 - Vomit Comet NASA trains astronauts to deal with...Ch. 13 - A 0.84-kg air cart is attached to a spring and...Ch. 13 - Predict/Calculate A person rides on a mechanical...Ch. 13 - An object moves with simple harmonic motion of...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - Predict/Explain If a mass m is attached to a given...Ch. 13 - Predict/Explain An old car with worn-out shock...Ch. 13 - Predict/Explain The two blocks in Figure 13-34...Ch. 13 - A 0.49-kg mass attached to a spring undergoes...Ch. 13 - A freshly caught catfish is placed on a spring...Ch. 13 - System A consists of a mass m attached to a spring...Ch. 13 - Find the periods of block 1 and block 2 in Figure...Ch. 13 - When a 0.62-kg mass is attached to a vertical...Ch. 13 - A spring with a force constant of 82 N/m is...Ch. 13 - A bunch of grapes is placed in a spring scale at a...Ch. 13 - Two people with a combined mass of 125 kg hop into...Ch. 13 - A 0.95-kg mass attached to a vertical spring of...Ch. 13 - When a 0.184-kg mass is attached to a vertical...Ch. 13 - Predict/Calculate The springs of a 511-kg...Ch. 13 - Predict/Calculate If a mass m is attached to a...Ch. 13 - A 0.285-kg mass is attached to a spring with a...Ch. 13 - A 1.6-kg mass attached to a spring oscillates with...Ch. 13 - Predict/Calculate A 0.40-kg mass is attached to a...Ch. 13 - Prob. 51PCECh. 13 - BIO Astronaut Mass An astronaut uses a Body Mass...Ch. 13 - Predict/Calculate A 0.505-kg block slides on a...Ch. 13 - A 3.55-g bullet embeds itself in a 1.47-kg block,...Ch. 13 - Metronomes, such as the penguin shown in Figure...Ch. 13 - Predict/Explain A grandfather clock keeps correct...Ch. 13 - An observant fan at a baseball game notices that...Ch. 13 - A simple pendulum of length 2.3 m makes 5.0...Ch. 13 - United Nations Pendulum A large pendulum with a...Ch. 13 - Predict/Calculate If the pendulum in the previous...Ch. 13 - A Hula Hoop hangs from a peg. Find the period of...Ch. 13 - A fireman tosses his 0.98-kg hat onto a peg, where...Ch. 13 - Predict/Calculate Consider a meterstick that...Ch. 13 - On the construction site for a new skyscraper, a...Ch. 13 - BIO (a) Find the period of a childs leg as it...Ch. 13 - Suspended from the ceiling of an elevator is a...Ch. 13 - CE An object undergoes simple harmonic motion with...Ch. 13 - CE If the amplitude of a simple harmonic...Ch. 13 - CE A mass m is suspended from the ceiling of an...Ch. 13 - CE A pendulum of length L is suspended from the...Ch. 13 - A 1.3-kg mass is attached to a spring with a force...Ch. 13 - BIO Measuring an Astronauts Mass An astronaut uses...Ch. 13 - Sunspot Observations Sunspots vary in number as a...Ch. 13 - BIO Weighing a Bacterium Scientists are using...Ch. 13 - CE An object undergoing simple harmonic motion...Ch. 13 - The maximum speed of a 4.1-kg mass attached to a...Ch. 13 - The acceleration of a block attached to a spring...Ch. 13 - Helioseismology In 1962, physicists at Cal Tech...Ch. 13 - Predict/Calculate A 9.50-g bullet, moving...Ch. 13 - BIO Spiderweb Oscillations A 1.44-g spider...Ch. 13 - A service dog tag (Figure 13-40) is a circular...Ch. 13 - Calculate the ratio of the kinetic energy to the...Ch. 13 - A 0.340-kg mass slides on a frictionless floor...Ch. 13 - A shock absorber is designed to quickly damp out...Ch. 13 - Predict/Calculate Figure 13-41 shows a...Ch. 13 - Predict/Calculate A 3.2-kg mass on a spring...Ch. 13 - A 0.45-kg crow lands on a slender branch and bobs...Ch. 13 - A mass m is connected to the bottom of a vertical...Ch. 13 - Predict/Calculate Consider the pendulum shown in...Ch. 13 - An object undergoes simple harmonic motion of...Ch. 13 - A physical pendulum consists of a light rod of...Ch. 13 - Predict/Calculate A vertical hollow tube is...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - Predict/Calculate Referring to Example 13-5...Ch. 13 - Predict/Calculate Referring to Example 13-12...Ch. 13 - Predict/Calculate Referring to Example 13-12 (a)...
Additional Science Textbook Solutions
Find more solutions based on key concepts
37. Balance each redox reaction occurring in acidic aqueous solution.
a. K(s) + Cr3+(aq) → Cr(s) + K+(aq)
b. Al...
Chemistry: A Molecular Approach (4th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
16. Explain some of the reasons why the human species has been able to expand in number and distribution to a g...
Campbell Biology: Concepts & Connections (9th Edition)
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
For Questions 3 through 1 0, give a specific example of a system with the energy transformation shown. In these...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A vibration sensor, used in testing a washing machine, consists of a cube of aluminum 1.50 cm on edge mounted on one end of a strip of spring steel (like a hacksaw blade) that lies in a vertical plane. The strips mass is small compared with that of the cube, but the strips length is large compared with the size of the cube. The other end of the strip is clamped to the frame of the washing machine that is not operating. A horizontal force of 1.43 N applied to the cube is required to hold it 2.75 cm away from its equilibrium position. If it is released, what is its frequency of vibration?arrow_forwardIn an oscillatory motion of a simple pendulum, the ratio of the maximum angular acceleration, O"max, to the maximum angular velocity, 6'max, is Tt s^(-1). What is the time needed for the pendulum to complete one-half oscillation? O 0.25 sec O 1 sec O2 sec O 4 sec O0.5 secarrow_forwardThe frequency w of the oscillator is 0.978 times the frequency w0 of the undamped oscillator. If the initial amplitude of oscillations is equal to A, what is the amplitude after 4 complete oscillations?arrow_forward
- In an oscillatory motion of a simple pendulum, the ratio of the maximum angular acceleration, O"max, to the maximum angular velocity, e'max, is tt s^(-1). What is the time needed for the pendulum to complete two oscillations? 4 sec 2 sec 1 sec 0.5 sec 0.25secarrow_forwardAfter landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 46.0 cm. The explorer finds that the pendulum completes 96.0 full swing cycles in a time of 145 s. What is the magnitude of the gravitational acceleration on this planet? Express your answer in meters per second per second. If we use idea of simple pendulum, such that the period or T = square root of the length/g cycles, I believe that 2 pie when when get rid of square root makes 2 pie become 4 pie. Please the math steps in detail where g= 4pie^2/T^2 I need to get the steps right, so I can use 2pie*sqare riit if L/Garrow_forwarda 5 kg mass hangs from the ceiling on a rope. when the mass is released from an angle of 5 degrees with the vertical (y direction), the period is 3.2s. how long is the rope?arrow_forward
- Five hoops are each pivoted at a point on the rim and allowed to swing as physical pendulums. The masses and radii are hoop 1: M = 150 g and R = 50 cm hoop 2: M hoop 3: M — 250 g and R 3 30 ст hoop 4: M = 300 g and R = 20 cm hoop 5: M = 350 g and R = 10 cm 200 g and R = 40 cm Order the hoops according to the periods of their motions, smallest to largest. А. 1, 2, 3, 4, 5 В. 5, 4, 3, 2, 1 С. 1, 2, 3, 5, 4 D. 1, 2, 5, 4, 3 Е. 5, 4, 1, 2, 3arrow_forwardA (B+25.0) g mass is hung on a spring. As a result the spring stretches (8.50+A) cm. If the object is then pulled an additional 3.0 cm downward and released, what is the period of the resulting oscillation? Give your answer in seconds with 3 significant figures. A=20 B=578arrow_forwardO 0.019 kg 0.047 kg O 0.040 kg In an oscillatory motion of a simple pendulum, the ratio of the maximum angular acceleration, O"max, to the maximum angular velocity, O'max, is Tt s^(-1). What is the time needed for the pendulum to complete two oscillations? O 0.25 sec 4 sec O 0.5 sec O 2 sec 1 sec A travoling w a taut ctring with aarrow_forward
- Need quick and correct solution.arrow_forwardA pendulum of length L oscillates with a frequency of 0.59 Hz near the surface of the planet Magrathea. When the length of the pendulum is decreased by 42 cm, the frequency increases to 0.81 Hz. What was the initial length of the pendulum?arrow_forwardWhat is the period of a pocket watch of mass m = 1.20 kg and length L = 0.356 m (14 inch), in second? Use g = 10 m/s2. Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY