Concept explainers
Predict/Calculate Figure 13-41 shows a displacement-versus-time graph of the periodic motion of a 3.8-kg mass on a spring. (a) Referring to the figure, do you expect the maximum speed of the mass to be greater than, less than, or equal to 0.50 m/s? Explain. (b) Calculate the maximum speed of the mass. (c) How much energy is stored in this system?
Figure 13-41 Problems 85 and 86
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Physics, Books a la Carte Edition (5th Edition)
Additional Science Textbook Solutions
Microbiology: An Introduction
Campbell Biology in Focus (2nd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- Consider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardUse the position data for the block given in Table P16.59. Sketch a graph of the blocks a. position versus time, b. velocity versus time and c. acceleration versus time. There is no need to label the values of velocity or acceleration on those graphs. TABLE P16.59arrow_forwardAn object of mass m is hung from a spring and set into oscillation. The period of the oscillation is measured and recorded as T. The object of mass m is removed and replaced with an object of mass 2m. When this object is set into oscillation, what is the period of the motion? (a) 2T (b) 2T (c) T (d) T/2 (e) T/2arrow_forward
- Integrated Concepts A toy gun uses a spring with a force constant of 300 N/m to propel a 10.0-g steel ball. If the spring is compressed 7.00 cm and friction is negligible: (a) How much force is needed to compress the spring? (b) To what maximum height can the ball be shot? (c) At what angles above the horizontal may a child aim to hit a target 3.00 m away at the same height as the gun? (d) What is the gun's maximum range on level ground?arrow_forwardYou attach a block to the bottom end of a spring hanging vertically. You slowly let the block move down and find that it hangs at rest with the spring stretched by 15.0 cm. Next, you lift the block back up to the initial position and release it from rest with the spring unstretched. What maximum distance does it move down? (a) 7.5 cm (b) 15.0 cm (c) 30.0 cm (d) 60.0 cm (e) The distance cannot be determined without knowing the mass and spring constant.arrow_forwardOne type of toy car contains a spring that is compressed as the wheels are rolled backward along a surface. The spring remains compressed until the wheels are freed and the car is allowed to roll forward. Jose learns that if he rolls the car backward for a greater distance (up to a certain point), the car will go faster when he releases it. The spring compresses 1.00 cm for every 10.0 cm the car is rolled backward. a. Assuming the spring constant is 150.0 N/m, what is the elastic potential energy stored in the spring when Jose rolls the car backward 20.0 cm? b. What is the elastic potential energy stored in the spring when he rolls the car backward 30.0 cm? c. Explain the correlation between the results for parts (a) and (b) and Joses observations of different speeds.arrow_forward
- A blockspring system oscillates with an amplitude of 3.50 cm. The spring constant is 250 N/m and the mass of the block is 0.500 kg. Determine (a) the mechanical energy of the system, (b) the maximum speed of the block, and (c) the maximum acceleration.arrow_forwardIn the short story The Pit and the Pendulum by 19th-century American horror writer Edgar Allen Poe, a man is tied to a table directly below a swinging pendulum that is slowly lowered toward him. The bob of the pendulum is a 1-ft steel scythe connected to a 30-ft brass rod. When the man first sees the pendulum, the pivot is roughly 1 ft above the scythe so that a 29-ft length of the brass rod oscillates above the pivot (Fig. P16.39A). The man escapes when the pivot is near the end of the brass rod (Fig. P16.39B). a. Model the pendulum as a particle of mass ms 5 2 kg attached to a rod of mass mr 5 160 kg. Find the pendulums center of mass and rotational inertia around an axis through its center of mass. (Check your answers by finding the center of mass and rotational inertia of just the brass rod.) b. What is the initial period of the pendulum? c. The man saves himself by smearing food on his ropes so that rats chew through them. He does so when he has no more than 12 cycles before the pendulum will make contact with him. How much time does it take the rats to chew through the ropes? FIGURE P16.39arrow_forwardA 1.50-kg mass is attached to a spring with spring constant 33.0 N/m on a frictionless, horizontal table. The springmass system is stretched to 4.00 cm beyond the equilibrium position of the spring and is released from rest at t = 0. a. What is the maximum speed of the 1.50-kg mass? b. What is the maximum acceleration of the 1.50-kg mass? c. What are the position, velocity, and acceleration of the 1.50-kg mass as functions of time?arrow_forward
- A horizontal spring attached to a wall has a force constant of 850 N/m. A block of mass 1.00 kg is attached to the spring and oscillates freely on a horizontal, frictionless surface as in Figure 5.22. The initial goal of this problem is to find the velocity at the equilibrium point after the block is released. (a) What objects constitute the system, and through what forces do they interact? (b) What are the two points of interest? (c) Find the energy stored in the spring when the mass is stretched 6.00 cm from equilibrium and again when the mass passes through equilibrium after being released from rest. (d) Write the conservation of energy equation for this situation and solve it for the speed of the mass as it passes equilibrium. Substitute to obtain a numerical value. (e) What is the speed at the halfway point? Why isnt it half the speed at equilibrium?arrow_forwardWhen an 80.0-kg man stands on a pogo stick, the spring is compressed 0.120 m. (a) What is the force constant of the spring? (b) Will the spring be compressed more when he hops down the road?arrow_forwardAssume that a pendulum used to drive a grandfather clock has a length L0=1.00 m and a mass M at temperature T=20.00 °C. It can be modeled as a physical pendulum as a rod oscillating around one end. By what percentage will the period change if the temperature increases by 10°C? Assume the length of the rod changes linearly with temperature, where L=L0(1+T) and the rod is made of (=18106C1) .arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University