
Physics, Books a la Carte Edition (5th Edition)
5th Edition
ISBN: 9780134020853
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.3, Problem 3EYU
An object moves with
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
43. A mass må undergoes circular
motion of radius R on a hori-
zontal frictionless table, con-
nected by a massless string
through a hole in the table to
a second mass m² (Fig. 5.33).
If m₂ is stationary, find expres-
sions for (a) the string tension
and (b) the period of the circu-
lar motion.
m2
R
m₁
FIGURE 5.33 Problem 43
CH
70. A block is projected up an incline at angle 0. It returns to its initial
position with half its initial speed. Show that the coefficient of ki-
netic friction is μk = tano.
Passage Problems
A spiral is an ice-skating position in which the skater glides on one
foot with the other foot held above hip level. It's a required element
in women's singles figure-skating competition and is related to the
arabesque performed in ballet. Figure 5.40 shows Canadian skater
Kaetlyn Osmond executing a spiral during her medal-winning perfor-
mance at the 2018 Winter Olympics in Gangneung, South Korea.
77. From the photo, you can conclude
that the skater is
a. executing a turn to her left.
b. executing a turn to her right.
c. moving in a straight line out of
the page.
78. The net force on the skater
a. points to her left.
b. points to her right.
c. is zero.
79. If the skater were to execute the same
maneuver but at higher speed, the tilt
evident in the photo would be
a. less.
b. greater.
c. unchanged.
FIGURE 5.40 Passage
Problems 77-80
80. The tilt angle 0 that the skater's body
makes with the vertical is given ap-
proximately by 0 = tan¯¹(0.5). From this you can conclude…
Chapter 13 Solutions
Physics, Books a la Carte Edition (5th Edition)
Ch. 13.1 - If the frequency of an oscillator is halved, by...Ch. 13.2 - Prob. 2EYUCh. 13.3 - An object moves with simple harmonic motion about...Ch. 13.4 - Rank the four massspring systems in Figure 13-15...Ch. 13.5 - The total mechanical energy of an ideal...Ch. 13.6 - Rank the four pendulum systems in Figure 13-25 in...Ch. 13.7 - The amplitude of a damped oscillation decreases...Ch. 13.8 - When you drive a pendulum at a frequency f1, you...Ch. 13 - A basketball player dribbles a ball with a steady...Ch. 13 - A person rides on a Ferris wheel that rotates with...
Ch. 13 - An air-track cart bounces back and forth between...Ch. 13 - If a mass m and a mass 2m oscillate on identical...Ch. 13 - An object oscillating with simple harmonic motion...Ch. 13 - The position of an object undergoing simple...Ch. 13 - The pendulum bob in Figure 13-18 leaks sand onto...Ch. 13 - A person in a rocking chair completes 12 cycles in...Ch. 13 - While fishing for catfish, a fisherman suddenly...Ch. 13 - If you dribble a basketball with a frequency of...Ch. 13 - You take your pulse and observe 74 heartbeats in a...Ch. 13 - BIO Slow-Motion Dragonfly A frame-by-frame...Ch. 13 - Predict/Calculate (a) Your heart beats with a...Ch. 13 - You rev your cars engine to 3300 rpm (rev/min)....Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - A position-versus-time plot for an object...Ch. 13 - A mass on a spring oscillates with simple harmonic...Ch. 13 - A mass oscillates on a spring with a period of...Ch. 13 - Predict/Calculate Molecular Oscillations An atom...Ch. 13 - A mass oscillates on a spring with a period T and...Ch. 13 - The position of a mass on a spring is given by x =...Ch. 13 - Predict/Calculate A mass attached to a spring...Ch. 13 - A lawn sprinkler oscillates with simple harmonic...Ch. 13 - A ball rolls on a circular track of radius 0.62 m...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - A child rocks back and forth on a porch swing with...Ch. 13 - Predict/Calculate A 30.0-g goldfinch lands on a...Ch. 13 - BIO Tuning Forks in Neurology Tuning forks are...Ch. 13 - A vibrating structural beam in a spacecraft can...Ch. 13 - A peg on a turntable moves with a constant...Ch. 13 - The pistons in an internal combustion engine...Ch. 13 - Vomit Comet NASA trains astronauts to deal with...Ch. 13 - A 0.84-kg air cart is attached to a spring and...Ch. 13 - Predict/Calculate A person rides on a mechanical...Ch. 13 - An object moves with simple harmonic motion of...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - Predict/Explain If a mass m is attached to a given...Ch. 13 - Predict/Explain An old car with worn-out shock...Ch. 13 - Predict/Explain The two blocks in Figure 13-34...Ch. 13 - A 0.49-kg mass attached to a spring undergoes...Ch. 13 - A freshly caught catfish is placed on a spring...Ch. 13 - System A consists of a mass m attached to a spring...Ch. 13 - Find the periods of block 1 and block 2 in Figure...Ch. 13 - When a 0.62-kg mass is attached to a vertical...Ch. 13 - A spring with a force constant of 82 N/m is...Ch. 13 - A bunch of grapes is placed in a spring scale at a...Ch. 13 - Two people with a combined mass of 125 kg hop into...Ch. 13 - A 0.95-kg mass attached to a vertical spring of...Ch. 13 - When a 0.184-kg mass is attached to a vertical...Ch. 13 - Predict/Calculate The springs of a 511-kg...Ch. 13 - Predict/Calculate If a mass m is attached to a...Ch. 13 - A 0.285-kg mass is attached to a spring with a...Ch. 13 - A 1.6-kg mass attached to a spring oscillates with...Ch. 13 - Predict/Calculate A 0.40-kg mass is attached to a...Ch. 13 - Prob. 51PCECh. 13 - BIO Astronaut Mass An astronaut uses a Body Mass...Ch. 13 - Predict/Calculate A 0.505-kg block slides on a...Ch. 13 - A 3.55-g bullet embeds itself in a 1.47-kg block,...Ch. 13 - Metronomes, such as the penguin shown in Figure...Ch. 13 - Predict/Explain A grandfather clock keeps correct...Ch. 13 - An observant fan at a baseball game notices that...Ch. 13 - A simple pendulum of length 2.3 m makes 5.0...Ch. 13 - United Nations Pendulum A large pendulum with a...Ch. 13 - Predict/Calculate If the pendulum in the previous...Ch. 13 - A Hula Hoop hangs from a peg. Find the period of...Ch. 13 - A fireman tosses his 0.98-kg hat onto a peg, where...Ch. 13 - Predict/Calculate Consider a meterstick that...Ch. 13 - On the construction site for a new skyscraper, a...Ch. 13 - BIO (a) Find the period of a childs leg as it...Ch. 13 - Suspended from the ceiling of an elevator is a...Ch. 13 - CE An object undergoes simple harmonic motion with...Ch. 13 - CE If the amplitude of a simple harmonic...Ch. 13 - CE A mass m is suspended from the ceiling of an...Ch. 13 - CE A pendulum of length L is suspended from the...Ch. 13 - A 1.3-kg mass is attached to a spring with a force...Ch. 13 - BIO Measuring an Astronauts Mass An astronaut uses...Ch. 13 - Sunspot Observations Sunspots vary in number as a...Ch. 13 - BIO Weighing a Bacterium Scientists are using...Ch. 13 - CE An object undergoing simple harmonic motion...Ch. 13 - The maximum speed of a 4.1-kg mass attached to a...Ch. 13 - The acceleration of a block attached to a spring...Ch. 13 - Helioseismology In 1962, physicists at Cal Tech...Ch. 13 - Predict/Calculate A 9.50-g bullet, moving...Ch. 13 - BIO Spiderweb Oscillations A 1.44-g spider...Ch. 13 - A service dog tag (Figure 13-40) is a circular...Ch. 13 - Calculate the ratio of the kinetic energy to the...Ch. 13 - A 0.340-kg mass slides on a frictionless floor...Ch. 13 - A shock absorber is designed to quickly damp out...Ch. 13 - Predict/Calculate Figure 13-41 shows a...Ch. 13 - Predict/Calculate A 3.2-kg mass on a spring...Ch. 13 - A 0.45-kg crow lands on a slender branch and bobs...Ch. 13 - A mass m is connected to the bottom of a vertical...Ch. 13 - Predict/Calculate Consider the pendulum shown in...Ch. 13 - An object undergoes simple harmonic motion of...Ch. 13 - A physical pendulum consists of a light rod of...Ch. 13 - Predict/Calculate A vertical hollow tube is...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - Predict/Calculate Referring to Example 13-5...Ch. 13 - Predict/Calculate Referring to Example 13-12...Ch. 13 - Predict/Calculate Referring to Example 13-12 (a)...
Additional Science Textbook Solutions
Find more solutions based on key concepts
MAKE CONNECTIONS Which chemical group is most likely to be responsible for an organic molecule behaving as a ba...
Campbell Biology (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. If you observed the redshift of galaxi...
Cosmic Perspective Fundamentals
30. Drosophila has a diploid chromosome number of 2n = 8, which includes one pair of sex chromosomes (XX in fem...
Genetic Analysis: An Integrated Approach (3rd Edition)
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Frictionless surfarrow_forward71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward
- 36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forwardPassage Problems Laptop computers are equipped with accelerometers that sense when the device is dropped and then put the hard drive into a protective mode. Your computer geek friend has written a program that reads the accel- erometer and calculates the laptop's apparent weight. You're amusing yourself with this program on a long plane flight. Your laptop weighs just 5 pounds, and for a long time that's what the program reports. But then the "Fasten Seatbelt" light comes on as the plane encounters turbu- lence. Figure 4.27 shows the readings for the laptop's apparent weight over a 12-second interval that includes the start of the turbulence. 76. At the first sign of turbulence, the plane's acceleration a. is upward. b. is downward. c. is impossible to tell from the graph. 77. The plane's vertical ac- celeration has its greatest magnitude a. during interval B. b. during interval C. c. during interval D. 78. During interval C, you can conclude for certain that the plane is Apparent…arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each otherarrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).arrow_forwardUsing Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forwardPart A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forward
- Ho propel 9-kN t. Boat 27. An elevator accelerates downward at 2.4 m/s². What force does the elevator's floor exert on a 52-kg passenger?arrow_forward16. 17 A CUIN Starting from rest and undergoing constant acceleration, a 940-kg racing car covers 400 m in 4.95 s. Find the force on the car.arrow_forward----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY