(a)
Interpretation:
The electron-pair geometry for each carbon and nitrogen atoms in the molecule
Concept introduction:
The electron pairs in Lewis diagrams repel each other in real molecule and thus they distribute themselves in positions around the central atoms which are far away from one another. This arrangement of electron pairs is called electron-pair geometry. The electron pairs may be shared in covalent bond, or they may be lone pairs.
Answer to Problem 28E
The Lewis diagram for the molecule
The electron pair geometry for the carbon
Explanation of Solution
To write the Lewis diagram for a compound first the number of valence electrons is to be calculated. In the molecule
In the molecule
Figure 1
The electron-pair geometry depends on the number of electron pairs around the central atoms. In the molecule
The Lewis diagram for the molecule
(b)
Interpretation:
The molecular geometry predicted by the valence shell electron-pair repulsion theory for each carbon and nitrogen atoms in the molecule
Concept introduction:
Molecular geometry is the precise term that is used to describe the shape of molecules and arrangement of atoms around the central atom. The molecular geometry of a molecule is predicted by valence shell electron-pair repulsion theory or in short VSEPR theory. VSEPR theory applies to substances in which a second period element is bonded to two, three, four, or other atoms.
Answer to Problem 28E
The Lewis diagram for the molecule
The molecular geometry for the carbon
Explanation of Solution
To write the Lewis diagram for a compound first the number of valence electrons is to be calculated. In the molecule
In the molecule
Figure 1
The molecular geometry depends on the number of electron pairs as well as number of lone-pair electrons on the central atoms. In the molecule
The Lewis diagram for the molecule
Want to see more full solutions like this?
Chapter 13 Solutions
Introductory Chemistry: An Active Learning Approach
- Use the Molecule Shape simulator (http://openstaxcollege.org/l/16MolecShape) to build amolecule. Starting with the central atom, click on the double bond to add one double bond. Then add one single bond and one lone pair. Rotate the molecule to observe the complete geometry. Name the electron group geometry and molecular structure and predict the bond angle. Then click the check boxes at the bottom and right of the simulator to check your answers.arrow_forwardQUESTION 5 Determine which compound should have a(n) linear molecular geometry. Key Concept: Lewis structures are drawn from a knowledge of the total number of electrons from all the atoms involved in the structure. The element with the lowest electronegativity is the central atom. Fulfill octet of outside atoms first. Molecular shape depends upon the number of atoms and lone pair electrons around the central atom. A H3O+ B ClF2+ C IF2- D AsF5arrow_forwardPredicting the arrangement of electron groups around the central atom of a molecule.arrow_forward
- NH3 vs BH3 NH3 BH3 polar nonpolar polar nonpolar Molecular Geometry Molecular Geometry Question 1b: How does the molecular geometry (trigonal pyramidal vs trigonal planar) affect the polarity?arrow_forwardCan you double check my work pleasearrow_forwardAnswer the questions in the table below about the shape of the methanone (H₂CO) molecule. How many electron groups are around the central carbon atom? Note: one "electron group" means one lone pair, one single bond, one double bond, or one triple bond. What phrase best describes the arrangement of these electron groups around the central carbon atom? (You may need to use the scrollbar to see all the choices.) (choose one) X Sarrow_forward
- QUESTION 13 :C=O: Consider the provided Lewis structure for carbon monoxide: CO. Fill in the blanks with the word "true" or "false" following each of the statements below A non-polar molecule has an even, symmetric distribution of electron density Carbon and oxygen have different electronegativity values. An atom with a lower electronegativity exerts more attraction towards electrons in a shared bond The carbon and oxygen atoms in the CO molecule both attract electrons with the same strength. Carbon monoxide is a polar moleculearrow_forwardAnswer the following true or false questions about the molecule acrylaldehyde, its resonance structures, and resonance hybrid. In fairness, many of these statements are false and represent common misconceptions about resonance. If a statement is false as written, change the underlined fragment of the statement to make it true. \ 1) Atoms can be moved around to make a new resonance form 2) The oxygen atom in acrylaldehyde has a full negative charge 3) These three resonance structures exist at different points in timearrow_forwardNO3 Sketch the proper Lewis structure for this substance. Be sure to follow octet/duet rules for each atom and use the total number of valence electrons available. Use your drawing to answer the following questions. Count the total number of electron domains surrounding the central atom. Enter the value only. Enter the name corresponding to the electron domain geometry. Choices are: linear, trigonal planar, or tetrahedral. Enter the name corresponding to the molecular geometry. Choices are: linear, trigonal planar, tetrahedral, bent, or trigonal pyramidal. Predict the bond angle. Enter the value without units. Use a "<" if needed.arrow_forward
- < Complete the following structural formula for a neutral molecule by adding H atoms to complete the valence of each atom. Do not introduce any double or triple bonds. Then complete the Lewis diagram by adding any unshared electron pairs needed, so that each atom except H has a complete octet. [Review Topics] [References] Use the References to access important values if needed for this question. Br Br C—C— Write the molecular formula in the order CHX, where X stands for Cl or Br. Submit Answer The number of unshared pairs in the Lewis diagram unshared pair(s). Retry Entire Group 9 more group attempts remaining Previous Email Instructor Next Save and Earrow_forwardIn which of the following compounds is there only 1 lone pair around the central atom? (Hint--first determine the central atom for each compound. Then draw the dot diagram for that element showing valance electrons. Which would you expect to have only 1 lone pair?) H2O PF3 BF3 HCNarrow_forwardAnswer the questions in the table below about the shape of the phosgene (COCI,) molecule. How many electron groups are around the central carbon atom? Note: one "electron group" means one lone pair, one single bond, one double bond, or one triple bond. What phrase best describes the arrangement of these electron groups around the central carbon atom? (You may need to use the scrollbar to see all the choices.) (choose one)arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning