(a)
Interpretation:
The total number of molecules of hydrogen gas that will react with one molecule of the given compound has to be identified.
Concept Introduction:
In this reaction no atoms or group of atoms are removed. Instead the unsaturated bond is reduced to saturated bond. A general scheme for addition reaction of
Hydrogenation is an example of addition reaction. In this reaction, a hydrogen molecule is incorporated into the molecules of organic compound. Hydrogenation of alkene results in the formation of alcohol, where both carbon atoms bonded by double bond gets hydrogen atom. This reaction requires a metal as catalyst.
In hydrogenation reaction with alkene, one molecule of hydrogen will react with one double bond in a molecule. Therefore, the number of molecules of hydrogen that will react with one molecule of the compound can be calculated by counting the number of double bonds present in the compound.
(b)
Interpretation:
The total number of molecules of hydrogen gas that will react with one molecule of the given compound has to be identified.
Concept Introduction:
Chemical reaction in which an atom or a group of atoms are added to each carbon atom of a carbon‑carbon multiple bond in a hydrocarbon or hydrocarbon derivative is known as addition reaction.
In this reaction no atoms or group of atoms are removed. Instead the unsaturated bond is reduced to saturated bond. A general scheme for addition reaction of alkene can be given as shown below,
Hydrogenation is an example of addition reaction. In this reaction, a hydrogen molecule is incorporated into the molecules of organic compound. Hydrogenation of alkene results in the formation of alcohol, where both carbon atoms bonded by double bond gets hydrogen atom. This reaction requires a metal as catalyst.
In hydrogenation reaction with alkene, one molecule of hydrogen will react with one double bond in a molecule. Therefore, the number of molecules of hydrogen that will react with one molecule of the compound can be calculated by counting the number of double bonds present in the compound.
(c)
Interpretation:
The total number of molecules of hydrogen gas that will react with one molecule of the given compound has to be identified.
Concept Introduction:
Chemical reaction in which an atom or a group of atoms are added to each carbon atom of a carbon‑carbon multiple bond in a hydrocarbon or hydrocarbon derivative is known as addition reaction.
In this reaction no atoms or group of atoms are removed. Instead the unsaturated bond is reduced to saturated bond. A general scheme for addition reaction of alkene can be given as shown below,
Hydrogenation is an example of addition reaction. In this reaction, a hydrogen molecule is incorporated into the molecules of organic compound. Hydrogenation of alkene results in the formation of alcohol, where both carbon atoms bonded by double bond gets hydrogen atom. This reaction requires a metal as catalyst.
In hydrogenation reaction with alkene, one molecule of hydrogen will react with one double bond in a molecule. Therefore, the number of molecules of hydrogen that will react with one molecule of the compound can be calculated by counting the number of double bonds present in the compound.
(d)
Interpretation:
The total number of molecules of hydrogen gas that will react with one molecule of the given compound has to be identified.
Concept Introduction:
Chemical reaction in which an atom or a group of atoms are added to each carbon atom of a carbon‑carbon multiple bond in a hydrocarbon or hydrocarbon derivative is known as addition reaction.
In this reaction no atoms or group of atoms are removed. Instead the unsaturated bond is reduced to saturated bond. A general scheme for addition reaction of alkene can be given as shown below,
Hydrogenation is an example of addition reaction. In this reaction, a hydrogen molecule is incorporated into the molecules of organic compound. Hydrogenation of alkene results in the formation of alcohol, where both carbon atoms bonded by double bond gets hydrogen atom. This reaction requires a metal as catalyst.
In hydrogenation reaction with alkene, one molecule of hydrogen will react with one double bond in a molecule. Therefore, the number of molecules of hydrogen that will react with one molecule of the compound can be calculated by counting the number of double bonds present in the compound.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
General, Organic, and Biological Chemistry
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe vibrational contribution isa) temperature independent for internal energy and heat capacityb) temperature dependent for internal energy and heat capacityc) temperature independent for heat capacityd) temperature independent for internal energyarrow_forward
- Quantum mechanics. Explain the basis of approximating the summation to an integral in translational motion.arrow_forwardQuantum mechanics. In translational motion, the summation is replaced by an integral when evaluating the partition function. This is correct becausea) the spacing of the translational energy levels is very small compared to the product kTb) the spacing of the translational energy levels is comparable to the product kTc) the spacing of the translational energy levels is very large compared to the product kTarrow_forwardDon't used Ai solutionarrow_forward
- Please correct answer and don't used hand raiting don't used Ai solutionarrow_forwardIf the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardIf the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning