![General, Organic, and Biological Chemistry](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
For the given molecule, whether cis‑trans isomerism is possible has to be indicated.
Concept Introduction:
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
(b)
Interpretation:
For the given molecule, whether cis‑trans isomerism is possible has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
(c)
Interpretation:
For the given molecule, whether cis‑trans isomerism is possible has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
(d)
Interpretation:
For the given molecule, whether cis‑trans isomerism is possible has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 13 Solutions
General, Organic, and Biological Chemistry
- In the image, the light blue sphere represents a mole of hydrogen atoms, the purple or teal spheres represent a mole of a conjugate base. A light blue sphere by itself is H+. Assuming there is 2.00 L of solution, answer the following: The Ka of the left & right solution is? The pH of the left & right solution is? The acid on the left & right is what kind of acid?arrow_forwardNonearrow_forwardNonearrow_forward
- Nonearrow_forwardWhat spectral features allow you to differentiate the product from the starting material? Use four separate paragraphs for each set of comparisons. You should have one paragraph each devoted to MS, HNMR, CNMR and IR. 2) For MS, the differing masses of molecular ions are a popular starting point. Including a unique fragmentation is important, too. 3) For HNMR, CNMR and IR state the peaks that are different and what makes them different (usually the presence or absence of certain groups). See if you can find two differences (in each set of IR, HNMR and CNMR spectra) due to the presence or absence of a functional group. Include peak locations. Alternatively, you can state a shift of a peak due to a change near a given functional group. Including peak locations for shifted peaks, as well as what these peaks are due to. Ideally, your focus should be on not just identifying the differences but explaining them in terms of functional group changes.arrow_forwardQuestion 6 What is the major product of the following Diels-Alder reaction? ? Aldy by day of A. H о B. C. D. E. OB OD Oc OE OAarrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780618562763/9780618562763_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)