General, Organic, and Biological Chemistry
General, Organic, and Biological Chemistry
7th Edition
ISBN: 9781285853918
Author: H. Stephen Stoker
Publisher: Cengage Learning
Question
Book Icon
Chapter 13, Problem 13.49EP

(a)

Interpretation Introduction

Interpretation:

The IUPAC name for the given molecule has to be assigned including the prefix cis- or trans-.

Concept Introduction:

IUPAC nomenclature for alkene:  There are about eight rules to be followed in giving IUPAC name for alkene.

  • The suffix –ane has to be replaced with the suffix –ene.  This is used to indicate the presence of double bond.
  • The longest continuous chain of carbon atoms has to be chosen that contains both carbon atoms of the double bond.
  • The parent carbon chain has to be numbered in a way so that the numbering begins at the end near to the double bond.  In case if the double bond is equidistant from both ends, then numbering has to be done from the end that is closer to substituents.
  • The position of the double bond has to be given a single number which is lower‑numbered carbon atom that is present in the double bond.
  • Suffixes like –diene, -triene, -tetrene, and so on are used when the compound contains more than one double bond.
  • In case of cycloalkenes which do not have any substitution, the numbering is not needed to locate the double bond because the bond is assumed to be between the carbons 1 and 2.
  • In case if substituents are present in cycloalkene, then the double‑bonded carbon atoms are numbered 1 and 2 in a direction where the substituent gets the lower number.
  • If the cycloalkenes contain more than one double bond, then one double bond is assigned the numbers 1 and 2 followed by the other double bond so that the lowest number possible is given.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.  To indicate a double bond between carbon atom, double line is used.

If stereoisomers are possible for the alkene, the stereoinformation is shown in the IUPAC name by adding prefix cis- or trans- with respect to the groups present on the same side of double bond or opposite side of double bond.

(a)

Expert Solution
Check Mark

Answer to Problem 13.49EP

The IUPAC name for the given compound is cis-2-pentene.

Explanation of Solution

Given compound is,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  1

The longest continuous carbon chain present in the given compound is five carbon atoms.  Hence, the parent alkane is pentane.

As the given compound contains a double bond, the suffix –ane is replaced by –ene.  Therefore, the name obtained is pentene.

Numbering has to be given in a way that the carbon atoms present in the double bond gets the least numbering.  Therefore, the name of the given compound is 2-pentene.

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  2

In order to include the stereo information, the groups attached to the double‑bonded carbon atoms are looked into.

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  3

The bulky groups are present on same side of the double bond.  Hence, the configuration of the given molecule is cis-.  Therefore, the IUPAC name can be given as cis-2-pentene.

Conclusion

IUPAC name for the given molecule is assigned.

(b)

Interpretation Introduction

Interpretation:

The IUPAC name for the given molecule has to be assigned including the prefix cis- or trans-.

Concept Introduction:

IUPAC nomenclature for alkene:  There are about eight rules to be followed in giving IUPAC name for alkene.

  • The suffix –ane has to be replaced with the suffix –ene.  This is used to indicate the presence of double bond.
  • The longest continuous chain of carbon atoms has to be chosen that contains both carbon atoms of the double bond.
  • The parent carbon chain has to be numbered in a way so that the numbering begins at the end near to the double bond.  In case if the double bond is equidistant from both ends, then numbering has to be done from the end that is closer to substituents.
  • The position of the double bond has to be given a single number which is lower‑numbered carbon atom that is present in the double bond.
  • Suffixes like –diene, -triene, -tetrene, and so on are used when the compound contains more than one double bond.
  • In case of cycloalkenes which do not have any substitution, the numbering is not needed to locate the double bond because the bond is assumed to be between the carbons 1 and 2.
  • In case if substituents are present in cycloalkene, then the double‑bonded carbon atoms are numbered 1 and 2 in a direction where the substituent gets the lower number.
  • If the cycloalkenes contain more than one double bond, then one double bond is assigned the numbers 1 and 2 followed by the other double bond so that the lowest number possible is given.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.  To indicate a double bond between carbon atom, double line is used.

If stereoisomers are possible for the alkene, the stereoinformation is shown in the IUPAC name by adding prefix cis- or trans- with respect to the groups present on the same side of double bond or opposite side of double bond.

(b)

Expert Solution
Check Mark

Answer to Problem 13.49EP

The IUPAC name for the given compound is trans-1-bromo-2-iodoethene.

Explanation of Solution

Given compound is,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  4

The longest continuous carbon chain present in the given compound is two carbon atoms.  Hence, the parent alkane is ethane.

As the given compound contains a double bond, the suffix –ane is replaced by –ene.  Therefore, the name obtained is ethene.

Numbering has to be given in a way that the carbon atoms present in the double bond gets the least numbering.  This is followed by the substituents present in the given molecule.  It is found that an iodine atom is present on the second carbon atom and bromine atom is present on the first carbon atom.  Therefore, the name of the given compound is 2-pentene.

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  5

In order to include the stereo information, the groups attached to the double‑bonded carbon atoms are looked into.

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  6

The bulky groups are present on opposite side of the double bond.  Hence, the configuration of the given molecule is trans-.  Therefore, the IUPAC name can be given as trans-1-bromo-2-iodoethene.

Conclusion

IUPAC name for the given molecule is assigned.

(c)

Interpretation Introduction

Interpretation:

The IUPAC name for the given molecule has to be assigned including the prefix cis- or trans-.

Concept Introduction:

IUPAC nomenclature for alkene:  There are about eight rules to be followed in giving IUPAC name for alkene.

  • The suffix –ane has to be replaced with the suffix –ene.  This is used to indicate the presence of double bond.
  • The longest continuous chain of carbon atoms has to be chosen that contains both carbon atoms of the double bond.
  • The parent carbon chain has to be numbered in a way so that the numbering begins at the end near to the double bond.  In case if the double bond is equidistant from both ends, then numbering has to be done from the end that is closer to substituents.
  • The position of the double bond has to be given a single number which is lower‑numbered carbon atom that is present in the double bond.
  • Suffixes like –diene, -triene, -tetrene, and so on are used when the compound contains more than one double bond.
  • In case of cycloalkenes which do not have any substitution, the numbering is not needed to locate the double bond because the bond is assumed to be between the carbons 1 and 2.
  • In case if substituents are present in cycloalkene, then the double‑bonded carbon atoms are numbered 1 and 2 in a direction where the substituent gets the lower number.
  • If the cycloalkenes contain more than one double bond, then one double bond is assigned the numbers 1 and 2 followed by the other double bond so that the lowest number possible is given.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.  To indicate a double bond between carbon atom, double line is used.

If stereoisomers are possible for the alkene, the stereoinformation is shown in the IUPAC name by adding prefix cis- or trans- with respect to the groups present on the same side of double bond or opposite side of double bond.

(c)

Expert Solution
Check Mark

Answer to Problem 13.49EP

The IUPAC name for the given compound is tetrafluoroethene.

Explanation of Solution

Given compound is,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  7

The longest continuous carbon chain present in the given compound is two carbon atoms.  Hence, the parent alkane is ethane.

As the given compound contains a double bond, the suffix –ane is replaced by –ene.  Therefore, the name obtained is ethene.

In this case, numbering does not make any difference.  This is because all the hydrogen atoms are replaced by fluorine atoms.  Hence, the IUPAC name can be given as tetrafluoroethene.

Stereoisomers are not possible for the given molecule because same groups are present on the carbon atom that is present on the double bond.

Conclusion

IUPAC name for the given molecule is assigned.

(d)

Interpretation Introduction

Interpretation:

The IUPAC name for the given molecule has to be assigned including the prefix cis- or trans-.

Concept Introduction:

IUPAC nomenclature for alkene:  There are about eight rules to be followed in giving IUPAC name for alkene.

  • The suffix –ane has to be replaced with the suffix –ene.  This is used to indicate the presence of double bond.
  • The longest continuous chain of carbon atoms has to be chosen that contains both carbon atoms of the double bond.
  • The parent carbon chain has to be numbered in a way so that the numbering begins at the end near to the double bond.  In case if the double bond is equidistant from both ends, then numbering has to be done from the end that is closer to substituents.
  • The position of the double bond has to be given a single number which is lower‑numbered carbon atom that is present in the double bond.
  • Suffixes like –diene, -triene, -tetrene, and so on are used when the compound contains more than one double bond.
  • In case of cycloalkenes which do not have any substitution, the numbering is not needed to locate the double bond because the bond is assumed to be between the carbons 1 and 2.
  • In case if substituents are present in cycloalkene, then the double‑bonded carbon atoms are numbered 1 and 2 in a direction where the substituent gets the lower number.
  • If the cycloalkenes contain more than one double bond, then one double bond is assigned the numbers 1 and 2 followed by the other double bond so that the lowest number possible is given.

Structural formula where a line represent carbon‑carbon bond and the carbon atom is considered to be present in each point and the end of lines is known as Line-angle structural formula.  To indicate a double bond between carbon atom, double line is used.

If stereoisomers are possible for the alkene, the stereoinformation is shown in the IUPAC name by adding prefix cis- or trans- with respect to the groups present on the same side of double bond or opposite side of double bond.

(d)

Expert Solution
Check Mark

Answer to Problem 13.49EP

The IUPAC name for the given compound is 2-methyl-2-butene.

Explanation of Solution

Given compound is,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  8

The longest continuous carbon chain present in the given compound is four carbon atoms.  Hence, the parent alkane is butane.

As the given compound contains a double bond, the suffix –ane is replaced by –ene.  Therefore, the name obtained is butene.

Numbering has to be given in a way that the carbon atoms present in the double bond gets the least numbering.  Therefore, the name of the given compound is 2-butene.  The substituent present on the longest carbon chain is a methyl group that is present on the second carbon atom.  Therefore, the name of the given molecule can be given as,

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  9

In order to include the stereo information, the groups attached to the double‑bonded carbon atoms are looked into.

General, Organic, and Biological Chemistry, Chapter 13, Problem 13.49EP , additional homework tip  10

The bulky groups are present on same carbon atom of the double bond.  Hence, isomerism is not possible.  Therefore, the IUPAC name of the given molecule is 2-methyl-2-butene.

Conclusion

IUPAC name for the given molecule is assigned.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Let's see if you caught the essentials of the animation. What is the valence value of carbon? a) 4 b) 2 c) 8 d) 6
A laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).
A laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).

Chapter 13 Solutions

General, Organic, and Biological Chemistry

Ch. 13.3 - Prob. 4QQCh. 13.4 - Prob. 1QQCh. 13.4 - Prob. 2QQCh. 13.5 - Prob. 1QQCh. 13.5 - Prob. 2QQCh. 13.5 - Prob. 3QQCh. 13.6 - Prob. 1QQCh. 13.6 - Prob. 2QQCh. 13.6 - Prob. 3QQCh. 13.7 - Prob. 1QQCh. 13.7 - Prob. 2QQCh. 13.7 - Prob. 3QQCh. 13.8 - Prob. 1QQCh. 13.8 - Prob. 2QQCh. 13.9 - Prob. 1QQCh. 13.9 - Prob. 2QQCh. 13.10 - Prob. 1QQCh. 13.10 - Prob. 2QQCh. 13.10 - Prob. 3QQCh. 13.10 - Prob. 4QQCh. 13.10 - Prob. 5QQCh. 13.11 - Prob. 1QQCh. 13.11 - Prob. 2QQCh. 13.11 - Prob. 3QQCh. 13.11 - Prob. 4QQCh. 13.11 - Prob. 5QQCh. 13.12 - Prob. 1QQCh. 13.12 - Prob. 2QQCh. 13.12 - Prob. 3QQCh. 13.12 - Prob. 4QQCh. 13.12 - Prob. 5QQCh. 13.13 - Prob. 1QQCh. 13.13 - Prob. 2QQCh. 13.13 - Prob. 3QQCh. 13.14 - Prob. 1QQCh. 13.14 - Prob. 2QQCh. 13.14 - Prob. 3QQCh. 13.14 - Prob. 4QQCh. 13.15 - Prob. 1QQCh. 13.15 - Prob. 2QQCh. 13.15 - Prob. 3QQCh. 13.15 - Prob. 4QQCh. 13.16 - Prob. 1QQCh. 13.16 - Prob. 2QQCh. 13 - Classify each of the following hydrocarbons as...Ch. 13 - Classify each of the following hydrocarbons as...Ch. 13 - Prob. 13.3EPCh. 13 - Prob. 13.4EPCh. 13 - Prob. 13.5EPCh. 13 - Prob. 13.6EPCh. 13 - Prob. 13.7EPCh. 13 - Prob. 13.8EPCh. 13 - Prob. 13.9EPCh. 13 - What is the molecular formula for each of the...Ch. 13 - Prob. 13.11EPCh. 13 - Prob. 13.12EPCh. 13 - What is wrong, if anything, with the following...Ch. 13 - Prob. 13.14EPCh. 13 - Prob. 13.15EPCh. 13 - Prob. 13.16EPCh. 13 - Prob. 13.17EPCh. 13 - Prob. 13.18EPCh. 13 - Draw a condensed structural formula for each of...Ch. 13 - Draw a condensed structural formula for each of...Ch. 13 - The following names are incorrect by IUPAC rules....Ch. 13 - The following names are incorrect by IUPAC rules....Ch. 13 - Prob. 13.23EPCh. 13 - Prob. 13.24EPCh. 13 - Prob. 13.25EPCh. 13 - Classify each of the following compounds as...Ch. 13 - Prob. 13.27EPCh. 13 - How many hydrogen atoms are present in a molecule...Ch. 13 - Prob. 13.29EPCh. 13 - Draw a line-angle structural formula for each of...Ch. 13 - Prob. 13.31EPCh. 13 - Prob. 13.32EPCh. 13 - Prob. 13.33EPCh. 13 - Prob. 13.34EPCh. 13 - Prob. 13.35EPCh. 13 - Prob. 13.36EPCh. 13 - Prob. 13.37EPCh. 13 - Prob. 13.38EPCh. 13 - For each of the following pairs of alkenes,...Ch. 13 - Prob. 13.40EPCh. 13 - Prob. 13.41EPCh. 13 - Prob. 13.42EPCh. 13 - Prob. 13.43EPCh. 13 - Prob. 13.44EPCh. 13 - Prob. 13.45EPCh. 13 - Prob. 13.46EPCh. 13 - For each molecule, indicate whether cistrans...Ch. 13 - For each molecule, indicate whether cistrans...Ch. 13 - Prob. 13.49EPCh. 13 - Prob. 13.50EPCh. 13 - Prob. 13.51EPCh. 13 - Draw a structural formula for each of the...Ch. 13 - Prob. 13.53EPCh. 13 - Prob. 13.54EPCh. 13 - Prob. 13.55EPCh. 13 - Prob. 13.56EPCh. 13 - Prob. 13.57EPCh. 13 - Prob. 13.58EPCh. 13 - Why is the number of carbon atoms in a terpene...Ch. 13 - How many isoprene units are present in a....Ch. 13 - Prob. 13.61EPCh. 13 - Indicate whether each of the following statements...Ch. 13 - Prob. 13.63EPCh. 13 - With the help of Figure 13-7, indicate whether...Ch. 13 - Prob. 13.65EPCh. 13 - Prob. 13.66EPCh. 13 - Prob. 13.67EPCh. 13 - Prob. 13.68EPCh. 13 - Prob. 13.69EPCh. 13 - Prob. 13.70EPCh. 13 - Prob. 13.71EPCh. 13 - Prob. 13.72EPCh. 13 - Prob. 13.73EPCh. 13 - Prob. 13.74EPCh. 13 - Prob. 13.75EPCh. 13 - Write a chemical equation showing reactants,...Ch. 13 - Supply the structural formula of the product in...Ch. 13 - Prob. 13.78EPCh. 13 - What reactant would you use to prepare each of the...Ch. 13 - Prob. 13.80EPCh. 13 - Prob. 13.81EPCh. 13 - Prob. 13.82EPCh. 13 - Prob. 13.83EPCh. 13 - Prob. 13.84EPCh. 13 - Prob. 13.85EPCh. 13 - Prob. 13.86EPCh. 13 - Prob. 13.87EPCh. 13 - Prob. 13.88EPCh. 13 - Prob. 13.89EPCh. 13 - Prob. 13.90EPCh. 13 - Prob. 13.91EPCh. 13 - Prob. 13.92EPCh. 13 - Prob. 13.93EPCh. 13 - What are the bond angles about the triple bond in...Ch. 13 - Prob. 13.95EPCh. 13 - Prob. 13.96EPCh. 13 - Prob. 13.97EPCh. 13 - Prob. 13.98EPCh. 13 - Prob. 13.99EPCh. 13 - Prob. 13.100EPCh. 13 - Prob. 13.101EPCh. 13 - Prob. 13.102EPCh. 13 - Prob. 13.103EPCh. 13 - Prob. 13.104EPCh. 13 - Prob. 13.105EPCh. 13 - Prob. 13.106EPCh. 13 - Prob. 13.107EPCh. 13 - Prob. 13.108EPCh. 13 - Assign each of the compounds in Problem 13-107 an...Ch. 13 - Assign each of the compounds in Problem 13-108 an...Ch. 13 - Prob. 13.111EPCh. 13 - Prob. 13.112EPCh. 13 - Prob. 13.113EPCh. 13 - Prob. 13.114EPCh. 13 - Prob. 13.115EPCh. 13 - Write a structural formula for each of the...Ch. 13 - Eight isomeric substituted benzenes have the...Ch. 13 - Prob. 13.118EPCh. 13 - Prob. 13.119EPCh. 13 - Prob. 13.120EPCh. 13 - Prob. 13.121EPCh. 13 - Prob. 13.122EPCh. 13 - Prob. 13.123EPCh. 13 - Prob. 13.124EPCh. 13 - Prob. 13.125EPCh. 13 - For each of the following classes of compounds,...Ch. 13 - Prob. 13.127EPCh. 13 - Prob. 13.128EPCh. 13 - Prob. 13.129EPCh. 13 - Prob. 13.130EP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co