
Concept explainers
(a)
Interpretation:
For the given molecule, whether cis‑trans isomerism is possible has to be indicated.
Concept Introduction:
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
(b)
Interpretation:
For the given molecule, whether cis‑trans isomerism is possible has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
(c)
Interpretation:
For the given molecule, whether cis‑trans isomerism is possible has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
(d)
Interpretation:
For the given molecule, whether cis‑trans isomerism is possible has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.

Want to see the full answer?
Check out a sample textbook solution
Chapter 13 Solutions
General, Organic, and Biological Chemistry
- please draw in the answers, thank youarrow_forwarda. On this first grid, assume that the DNA and RNA templates are read left to right. DNA DNA mRNA codon tRNA anticodon polypeptide _strand strand C с A T G A U G C A TRP b. Now do this AGAIN assuming that the DNA and RNA templates are read right to left. DNA DNA strand strand C mRNA codon tRNA anticodon polypeptide 0 A T G A U G с A TRParrow_forwardplease answer all question below with the following answer choice, thank you!arrow_forward
- please draw in the answeres, thank youarrow_forwardA) What is being shown here?B) What is indicated by the RED arrow?C) What is indicated by the BLUE arrow?arrow_forwardPlease identify the curve shown below. What does this curve represent? Please identify A, B, C, D, and E (the orange oval). What is occurring in these regions?arrow_forward
- Please identify the test shown here. 1) What is the test? 2) What does the test indicate? How is it performed? What is CX? 3) Why might the test be performed in a clinical setting? GEN CZ CX CPZ PTZ CACarrow_forwardDetermine how much ATP would a cell produce when using fermentation of a 50 mM glucose solution?arrow_forwardDetermine how much ATP would a cell produce when using aerobic respiration of a 7 mM glucose solution?arrow_forward
- Determine how much ATP would a cell produce when using aerobic respiration to degrade one small protein molecule into 12 molecules of malic acid, how many ATP would that cell make? Malic acid is an intermediate in the Krebs cycle. Assume there is no other carbon source and no acetyl-CoA.arrow_forwardIdentify each of the major endocrine glandsarrow_forwardCome up with a few questions and answers for umbrella species, keystone species, redunant species, and aquatic keystone speciesarrow_forward
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningPrinciples Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage Learning
- Essentials of Pharmacology for Health ProfessionsNursingISBN:9781305441620Author:WOODROWPublisher:CengageBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning


