ANATOMY & PHYSIOLOGY LL W/CONNECT ACCESS
4th Edition
ISBN: 9781265521363
Author: McKinley
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.7, Problem 18WDYL
Summary Introduction
To determine:
The role of ions, phospholipid bilayer and the plasma membrane channels in neurons relative to the concepts of current, voltage and resistance.
Concept introduction:
A neuron is a basic functional unit of the nervous system and is the specialized cells of the nervous system that makes a complex network for the transmission of messages. A neuron is made up of a cell body, nerve fibers: dendrites and an axon in its structure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
what is the role of (1) electrochemical gradient created by ions, (2) permeability of the membrane proteins to such ions, (3) strength of stimulus, and (4) duration of the refractory period in the generation and propagation of action potential.
If: membrane potential=-70mV, ENa=+60mV, and Ex=-90mV, consider which directions Na+ and K+ will leak across the membrane. If both ions are crossing the membrane, what is the most important factor in determining whether membrane potential will become more positive or more negative?
What kind of graded potential describes a change in membrane potential from 70 to 60 mV? From 70 to 80 mV?
Chapter 12 Solutions
ANATOMY & PHYSIOLOGY LL W/CONNECT ACCESS
Ch. 12.1 - Prob. 1WDYLCh. 12.1 - Prob. 2WDYLCh. 12.1 - Prob. 3WDYLCh. 12.2 - Prob. 4WDYLCh. 12.2 - Prob. 5WDYLCh. 12.2 - Prob. 6WDYLCh. 12.2 - Prob. 7WDYLCh. 12.2 - Prob. 8WDYLCh. 12.3 - Prob. 9WDYLCh. 12.4 - If a person has a brain tumor, is it more likely...
Ch. 12.4 - Prob. 11WDYLCh. 12.4 - Prob. 12WDYLCh. 12.4 - Prob. 13WDYLCh. 12.5 - Prob. 14WDYLCh. 12.5 - Prob. 15WDYLCh. 12.6 - Prob. 16WDYLCh. 12.6 - Prob. 17WDYLCh. 12.7 - Prob. 18WDYLCh. 12.7 - Prob. 19WDYLCh. 12.7 - Prob. 20WDYLCh. 12.8 - How are EPSP and IPSP graded potentials...Ch. 12.8 - Prob. 22WDYLCh. 12.8 - How does depolarization and repolarization occur...Ch. 12.8 - Prob. 24WDYLCh. 12.8 - Prob. 25WDYLCh. 12.9 - Prob. 26WDYLCh. 12.9 - Prob. 27WDYLCh. 12.9 - Prob. 28WDYLCh. 12.10 - Prob. 29WDYLCh. 12.10 - Prob. 30WDYLCh. 12.10 - Prob. 31WDYLCh. 12.11 - Prob. 32WDYLCh. 12.11 - Prob. 33WDYLCh. 12 - Prob. 1DYKBCh. 12 - Prob. 2DYKBCh. 12 - Prob. 3DYKBCh. 12 - Prob. 4DYKBCh. 12 - Prob. 5DYKBCh. 12 - Prob. 6DYKBCh. 12 - _____ 7. An action potential is generated when...Ch. 12 - Prob. 8DYKBCh. 12 - Prob. 9DYKBCh. 12 - Prob. 10DYKBCh. 12 - What are the four structural types of neurons? How...Ch. 12 - Prob. 12DYKBCh. 12 - How does myelination differ between the CNS and...Ch. 12 - Describe the procedure by which a PNS axon may...Ch. 12 - Prob. 15DYKBCh. 12 - Prob. 16DYKBCh. 12 - Explain summation of EPSPs and IPSPs and the...Ch. 12 - Graph and explain the events associated with an...Ch. 12 - Prob. 19DYKBCh. 12 - Prob. 20DYKBCh. 12 - Prob. 1CALCh. 12 - Prob. 2CALCh. 12 - Prob. 3CALCh. 12 - Prob. 4CALCh. 12 - Sarah wants to call her new friend Julie and needs...Ch. 12 - Over a period of 6 to 9 months, Marianne began to...Ch. 12 - Prob. 2CSLCh. 12 - Prob. 3CSL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- What is the difference between the membrane potential in a normal cell and an excitable cell?arrow_forwardThe following is a graph of membrane potential over time during an action potential. At which labeled point, A-D, would permeability to potassium (K+) be the greatest? A) B) C) D)arrow_forwardWhat is resting membrane potential close to and why?arrow_forward
- describe what the resting membrane potential of a cell is. What is the resting membrane potential of neurons (give units)? What are the two factors that generate the resting membrane potential? Think of scenarios that change the factors that generate the resting membrane potential and how that would change the overall resting membrane potential.arrow_forwardMatch each type of membrane potential (resting, threshold, graded, or action) to its definition: a) The membrane potential at which voltage gated sodium channels open. b) The membrane potential that triggers the action potential. c) Change in membrane potential that may or may not reach threshold and that may be depolarizing or hyperpolarizing. d) Rapid, strong depolarization followed by immediate repolarization. This potential is self-renewing if the right ion channels are nearby.arrow_forwardWhat effect would decreasing the concentration of extracellular potassium ions have on the membrane potential of a neuron?arrow_forward
- What is the typical resting membrane potential of a neuron?arrow_forwardHyperkalemia is a condition by which ECF potassium levels become too high (usually due to kidney failure). Consider the following questions about the consequence of hyperkalemia on membrane potential. How would hyperkalemia affect EK? Considering your answer to the previous question, how would hyperkalemia affect membrane potential?arrow_forwardWhat is the equilibrium membrane potential due to Na+ ions if the extracellular concentration of Na+ ions is 154 mM and the intracellular concentration of Na+ ions is 23 mM at 20 ∘C ?arrow_forward
- Assume that in a neuron, the plasma membrane permeability values for potassium (K+), sodium (Na+), and Cl− are the following: PK = 1, PNa = 12, and PCl = 0.5. Based on physiological concentrations of K+, Na+, and Cl− (refer to the table), determine the membrane potential in this neuron.arrow_forwardChoose the correct answer: A) When the voltage gated K+ channels open K+ moves down its concentration gradient from the ECF to inside the cell. O B) The value for resting membrane potential is closer to the EK+ (Equilibrium potential for K+) than the ENa+ O C) When the membrane potential is at rest the membrane is more permeable to Na+ than it is to K+ O D) Closing of the voltage-gated Na+ channels increases the permeability of the membrane to Na+arrow_forwardWhat is the equilibrium membrane potential due to Na+Na+ ions if the extracellular concentration of Na+Na+ ions is 138 mM138 mM and the intracellular concentration of Na+Na+ ions is 21 mM21 mM at 20 ∘C20 ∘C ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage LearningPrinciples Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage Learning
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning
The Cell Membrane; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=AsffT7XIXbA;License: Standard youtube license