Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 33 . f ( x , y ) = 10 − 2 x 2 − 3 y 2 ; P ( 3 , 2 )
Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 33 . f ( x , y ) = 10 − 2 x 2 − 3 y 2 ; P ( 3 , 2 )
Interpreting directional derivativesA function f and a point P are given. Let θ correspond to the direction of the directional derivative.
a.Find the gradient and evaluate it at P.
b.Find the angles θ (with respect to the positive x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
c.Write the directional derivative at P as a function of θ; call this function g.
d.Find the value of θ that maximizes g(θ) and find the maximum value.
e.Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient.
33.
f
(
x
,
y
)
=
10
−
2
x
2
−
3
y
2
;
P
(
3
,
2
)
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY