Gradients in three dimensions Consider the following functions f, points P, and unit vectors u . a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 56. f ( x , y , z ) = 4 − x 2 + 3 y 2 + z 2 2 ; P ( 0 , 2 , − 1 ) ; 〈 0 , 1 2 , 1 2 〉
Gradients in three dimensions Consider the following functions f, points P, and unit vectors u . a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 56. f ( x , y , z ) = 4 − x 2 + 3 y 2 + z 2 2 ; P ( 0 , 2 , − 1 ) ; 〈 0 , 1 2 , 1 2 〉
Solution Summary: The author explains how the gradient of f(x,y,z) is computed as follows.
Gradients in three dimensionsConsider the following functions f, points P, and unit vectorsu.
a.Compute the gradient of f and evaluate it at P
b.Find the unit vector in the direction of maximum increase of f at P.
c.Find the rate of change of the function in the direction of maximum increase at P.
d.Find the directional derivative at P in the direction of the given vector.
56.
f
(
x
,
y
,
z
)
=
4
−
x
2
+
3
y
2
+
z
2
2
;
P
(
0
,
2
,
−
1
)
;
〈
0
,
1
2
,
1
2
〉
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Use the information to find and compare Δy and dy. (Round your answers to four decimal places.)
y = x4 + 7 x = −3 Δx = dx = 0.01
Δy =
dy =
4. A car travels in a straight line for one hour. Its velocity, v, in miles per hour at six minute intervals is shown
in the table. For each problem, approximate the distance the car traveled (in miles) using the given method,
on the provided interval, and with the given number of rectangles or trapezoids, n.
Time (min) 0 6 12 18|24|30|36|42|48|54|60
Speed (mph) 0 10 20 40 60 50 40 30 40 40 65
a.) Left Rectangles, [0, 30] n=5
b.) Right Rectangles, [24, 42] n=3
c.) Midpoint Rectangles, [24, 60] n=3
d.) Trapezoids, [0, 24] n=4
The bracket BCD is hinged at C and attached to a control cable at B. Let F₁ = 275 N and F2 = 275 N.
F1
B
a=0.18 m
C
A
0.4 m
-0.4 m-
0.24 m
Determine the reaction at C.
The reaction at C
N Z
F2
D
Chapter 12 Solutions
Student Solutions Manual, Single Variable for Calculus: Early Transcendentals
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.