Gradients in three dimensions Consider the following functions f, points P, and unit vectors u. a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 55. f ( x , y , z ) = x 2 + 2 y 2 + 4 z 2 + 10 ; P ( 1 , 0 , 4 ) ; 〈 1 2 , 0 , 1 2 〉
Gradients in three dimensions Consider the following functions f, points P, and unit vectors u. a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 55. f ( x , y , z ) = x 2 + 2 y 2 + 4 z 2 + 10 ; P ( 1 , 0 , 4 ) ; 〈 1 2 , 0 , 1 2 〉
Gradients in three dimensionsConsider the following functions f, points P, and unit vectors u.
a.Compute the gradient of f and evaluate it at P
b.Find the unit vector in the direction of maximum increase of f at P.
c.Find the rate of change of the function in the direction of maximum increase at P.
d.Find the directional derivative at P in the direction of the given vector.
55.
f
(
x
,
y
,
z
)
=
x
2
+
2
y
2
+
4
z
2
+
10
;
P
(
1
,
0
,
4
)
;
〈
1
2
,
0
,
1
2
〉
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
4
In the integral dxf1dy (7)², make the change of variables x = ½(r− s), y = ½(r + s), and
evaluate the integral. Hint: Find the limits on r and s by sketching the area of integration in the (x, y) plane along
with the r and s axes, and then show that the same area can be covered by s from 0 to r and r from 0 to 1.
7. What are all values of 0, for 0≤0<2л, where 2 sin² 0=-sin?
-
5π
6
π
(A) 0, л,
and
6
7π
(B) 0,л,
11π
, and
6
6
π 3π π
(C)
5π
2 2 3
, and
π 3π 2π
(D)
2' 2'3
, and
3
4元
3
1
די
}
I
-2m
3
1
-3
บ
1
#
1
I
3#
3m
8. The graph of g is shown above. Which of the following is an expression for g(x)?
(A) 1+ tan(x)
(B) 1-tan (x)
(C) 1-tan (2x)
(D) 1-tan
+
X
-
9. The function j is given by j(x)=2(sin x)(cos x)-cos x. Solve j(x) = 0 for values of x in the interval
Quiz A: Topic 3.10
Trigonometric Equations and Inequalities
Created by Bryan Passwater
can you solve this question using the right triangle method and explain the steps used along the way
Chapter 12 Solutions
Student Solutions Manual, Single Variable for Calculus: Early Transcendentals
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.