Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259638091
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.2, Problem 12.93P
A small ball swings in a horizontal circle at the end of a cord of length l1, which forms an angle θ1 with the vertical. The cord is then slowly drawn through the support at O until the length of the free end is l2. (a) Derive a relation among l1, l2, θ1, and θ2. (b) If the ball is set in motion so that initially l1 = 0.8 m and θ1 = 35°, determine the angle θ2 when l2 = 0.6 m.
Fig. P12.93
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ball B (v) with a mass of 2.0 kg is rotating in an orbit of r = 0.8 m with a velocity = = 2.4 m / s. From this moment on, find the velocity of ball B at the moment when r is 0.5 m since the rope attached to it is pulled as shown in the figure with v, = 1.2m / s. Also calculate the work required to pull the rope.
Q2/
The slotted arm revolves about a normal axis through point O
with a constant angular velocity w.The path radius of the center
of the pin A varies according to r = 20+ 2sin(nwt)where n is the
number of lobes = 6 in this case.
pin A
If w=12 rad/s, and the spring compression varies from 11.5 N
to 19.1 N, calculate the force R between the cam and the 0.1 kg
pin A when it passes over the top of the lobe in the position
shown
I
Suppose an autonomous surface vessel (ASV) traveling with velocity TvG/O= vi₁ begins to make
a turn by adjusting the thrust of its left and right thrusters, TA and TB, respectively. The center of
mass of the ASV is located at G and the ASV is symmetric about its vertical axis. The ASV also
experiences a drag force that is proportional to its speed and opposes its velocity. At the instant
shown, the drag force is D = -kvi₁ where k is a drag coefficient.
1. To model the mass moment of inertia, approximate the ASV as consisting of three rigid
bodies: a flat plate as a center body of mass 6m and two slender rods housing the propulsion
assemblies, each of mass m, at the outboard sides of the vehicle. Determine the mass
moment of inertia, IG, about the vertical axis passing through the center of mass G. (Hint:
Use the parallel axis theorem.)
2. At the instant shown, determine the inertial acceleration vector ac/o = axi₁ + ayi2 of the
center of mass and the angular acceleration a of the…
Chapter 12 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A hollow, smooth cylindrical spool has inner radius R/ 2, outer radius R and mass M. The roller is frictionally M mounted so that it can rotate around a fixed horizontal shaft. The mass m is attached to the end of the rope wrapped around the reel. When this mass m is released, it drops by y in time t. The moment of the friction force between the pulley and the shaft, m R/2 7 = R[m(g – 2y/t²) – M(5y/41²)] R/2 prove that it is. (The moment of inertia of a hollow cylinder with inner and outer radi, R1 and R2, with respect to the long axis through the center of mass.)arrow_forwardPeople A and B are fixed on a frictionless disk with radius R= 4 (m) and rotating at an angular velocity o= 3 (rad/s) as shown in the figure. As shown in the figure, person A in the center throws the ball in his hand at v = 8 (m/s) so that the person B can catch the ball. Since the image given in the figure shows t=0 (s), after how many seconds should person A throw the ball so that pers on B can catch it? Take T=3. 1= 0 В A. v R A) 0.35 В) 0.55 С) 0.75 D) 1.2 E) 0.50arrow_forwardA particle M1, weighing 2.4 Ibs, is tied to a thread and describes a circular path in a horizontal plane. The thread, of negligible mass, passes through a hole in the center of the circle and descends vertically. Another particle M2 is attached, weighing 5.0 Ibs, as shown in the figure. If M1 describes a uniform circular motion, with angular velocity w 3.1 rad/s, determine the radius R of the circumference in inches.arrow_forward
- A block with some mass m is connected to a string that is attached to the ceiling. The block on the end of the string is going around a circular path with a constant radius r and constant speed. Applying Newton's second law to the x component of force seperately in order to find the expressions for the tension of the string in terms of mass m, angle θ, and constant g. The x direction includes centripetal acceleration.arrow_forwardJourney through the Center of the Earth. A 1024-kg blue ball is dropped from an initial z-position of 2.3 x 106 m through the center of a planet with radius 7.6 x 106 m. If the mass of the planet is 33.9 x 1015 kg, measure the displacement of the ball at time t = 9 s?arrow_forwardA 6 kg ball attached to a weightless cord is swung around in a horizontal circle of radius 1.5 m. The cord generates a cone. If the strength of the cord is 120 N, at what speed N (rev/min) will it break?arrow_forward
- The slider P can be moved inward by means of the string S as the bar OA rotates about the pivot 0. The angular position of the bar is given by 0 = 0.4 +0.12t+ 0.06t³, where 0 is in radians and t is in seconds. The position of the slider is given by r = 0.8 0.1t 0.05t2, where r is in meters and t is in seconds. Determine and sketch the velocity and acceleration of the slider at time t = 2 s. Find the angles a and ß which v and a make with the posi- tive x-axis. S 0 Problem 2/144 رفع جكarrow_forwardWhat is the direction of the acceleration of the pendulum bob A at the instant shown in the figure?arrow_forwardThe sphere of mass m1 = 5 kg falls from a height H = 1.4 m onto the homogeneous board of negligible mass. The board can rotate about a horizontal axis passing through point O, and a body of mass m2 = 3.1 kg is placed on it at a distance b = 1 m from the axis of rotation. The collision is perfectly inelastic. How high does the body of mass m2 rise after the collision (in m) if a = 0.7 m?arrow_forward
- Two propellers of lengths and masses l, L and m, M rotate in the same direction, as shown in the figure. if the left propeller starts from rest, w1=0 and the right propeller starts with an angular velocity that the right propeller ends up with after both propellers have collided.arrow_forwardThe sphere of mass m1 = 5 kg falls from a height H = 1.4 m onto the homogeneous board of negligible mass. The board can rotate around a horizontal axis passing through point O, and a body of mass m2 = 3.9 kg is placed on it at a distance b = 1 m from the axis of rotation. The collision is perfectly inelastic. How high does the body of mass m2 rise after the collision (in m) if a = 0.5 m?arrow_forwardI need a simple solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
How to balance a see saw using moments example problem; Author: Engineer4Free;https://www.youtube.com/watch?v=d7tX37j-iHU;License: Standard Youtube License