
Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259638091
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 12.123RP
A bucket is attached to a rope of length L = 1.2 m and is made to revolve in a horizontal circle. Drops of water leaking from the bucket fall and strike the floor along the perimeter of a circle of radius a. Determine the radius a when θ = 30°.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Consider a piece of steel undergoing a decarburization process at 925 degrees C. the mass diffusivity of carbon in steel at 925 degrees C is 1*10^-7 cm^2/s. Determine the depth below the surface of the steel at which the concentration of carbon is reduced to 40 percent from its initial value as a result of the decarburization process for (a) an hour and (b) 10 hours. Assume the concnetration of carbon at the surface is zero throughout the decarburization process.
Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful!
Please do not copy other's work,i will be very very grateful!!
Multiple Choice
Circle the best answer to each statement.
1. Which geometry attribute deviation(s) can be limited
with a profile of a surface tolerance?
A. Location
B. Orientation
C.
Form
D.
All of the above
2. A true profile may be defined with:
A.
Basic radii
B. Basic angles
C. Formulas
D. All of the above
3. Which modifier may be applied to the profile tolerance
value?
A
B
C.
D. All of the above
4. The default tolerance zone for a profile tolerance is:
A. Non-uniform
B. Unilateral
C. Bilateral equal distribution
D. Bilateral-unequal distribution
5. An advantage of using a profile tolerance in place of a
coordinate tolerance is:
A. A bonus tolerance is permitted.
B. A datum feature sequence may be specified
C. A profile tolerance always controls size
D. All of the above
6. The shape of the tolerance zone for a profile tolerance is:
A. Two parallel planes
B. The same as the true profile of the toleranced
surface
C. Equal bilateral
D. Cylindrical when the diameter symbol is speci-
fied…
Chapter 12 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is an uninitialized variable?
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Why is the study of database technology important?
Database Concepts (8th Edition)
Assume a telephone signal travels through a cable at two-thirds the speed of light. How long does it take the s...
Electric Circuits. (11th Edition)
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
Computers process data under the control of sets of instructions called
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Using your text editor, enter (that is, type in) the C++ program shown in Display 1.8. Be certain to type the f...
Problem Solving with C++ (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- One thousand kg/h of a (50-50 wt%) acetone-in-water solution is to be extracted at 25C in a continuous, countercurrent system with pure 1,1,2-trichloroethane to obtain a raffinate containing 10 wt% acetone. Using the following equilibrium data, determine with an equilateral-triangle diagram: a- the minimum flow rate of solvent; b- the number of stages required for a solvent rate equal to 1.5 times minimum, and composition of each streamleaving each stage. c- Repeat the calculation of (a) and (b) if the solvent used has purity 93wt% (4wr% acetone, 3wt% water impurities) acetone water 1,1,2-trichloroethane Raffinate. Weight Extract. Weight 0.6 0.13 0.27 Fraction Acetone Fraction Acetone 0.5 0.04 0.46 0.44 0.56 0.4 0.03 0.57 0.29 0.40 0.3 0.02 0.68 0.12 0.18 0.2 0.015 0.785 0.0 0.0 0.1 0.01 0.89 0.55 0.35 0.1 0.5 0.43 0.07 0.4 0.57 0.03 0.3 0.68 0.02 0.2 0.79 0.01 0.1 0.895 0.005arrow_forward2500 kg/hr of (20-80) nicotine water solution is to be extracted with benzene containing 0.5% nicotine in the 1st and 2ed stages while the 3rd stage is free of nicotine. Cross- current operation is used with different amounts of solvent for each stages 2000kg/hr in the 1st stage, 2300 kg/hr in the 2nd stage, 2600 kg/hr in the 3rd, determine: - a- The final raffinate concentration and % extraction. b- b- The minimum amount of solvent required for counter-current operation if the minimum concentration will be reduced to 5% in the outlet raffinate. Equilibrium data Wt % Nicotine in water Wt % Nicotine in benzene 0 4 16 25 0 4 21 30arrow_forwardQuiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1=6mm, for w2 h2 5mm, and for w3 is h3 -5.5 mm. Determine the safety factor (S.f) for the welds. F=22 kN. Use an AWS Electrode type (E90xx). 140 101.15 REDMI NOTE 8 PRO AI QUAD CAMERA Farrow_forward
- (read image)arrow_forwardProblem 3.30 A piston-cylinder device contains 0.85 kg of refrigerant- 134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 100 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Determine (a) the final pressure, (b) the change in the volume of the refrigerant, and (c) the change in the enthalpy of the refrigerant-134a. please show Al work step by steparrow_forwardPart 1 The storage tank contains lubricating oil of specific gravity 0.86 In one inclined side of the tank, there is a 0.48 m diameter circular inspection door, mounted on a horizontal shaft along the centre line of the gate. The oil level in the tank rests 8.8 m above the mounted shaft. (Please refer table 01 for relevant SG, D and h values). Describe the hydrostatic force and centre of pressure with the aid of a free body diagram of the inspection door. Calculate the magnitude of the hydrostatic force and locate the centre of pressure. 45° Estimate the moment that would have to be applied to the shaft to open the gate. Stop B If the oil level raised by 2 m from the current level, calculate the new moment required to open the gate. Figure 01arrow_forward
- From thermodynamics please fill in the table show all work step by steparrow_forwardThe 150-lb skater passes point A with a speed of 6 ft/s. (Figure 1) Determine his speed when he reaches point B. Neglect friction. Determine the normal force exerted on him by the track at this point. 25 ft B = 4x A 20 ft xarrow_forwardA virtual experiment is designed to determine the effect of friction on the timing and speed of packages being delivered to a conveyor belt and the normal force applied to the tube. A package is held and then let go at the edge of a circular shaped tube of radius R = 5m. The particle at the bottom will transfer to the conveyor belt, as shown below. Run the simulations for μ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and determine the time and speed at which the package is delivered to the conveyor belt. In addition, determine the maximum normal force and its location along the path as measured by angle 0. Submit in hardcopy form: (0) Free Body Diagram, equations underneath, derivations (a) Your MATLAB mfile (b) A table listing the values in 5 columns: μ, T (time of transfer), V (speed of transfer), 0 (angle of max N), Nmax (max N) (c) Based on your results, explain in one sentence what you think will happen to the package if the friction is increased even further, e.g. μ = 0.8. NOTE: The ODE is…arrow_forward
- Patm = 1 bar Piston m = 50 kg 5 g of Air T₁ = 600 K P₁ = 3 bar Stops A 9.75 x 10-3 m² FIGURE P3.88arrow_forwardAssume a Space Launch System (Figure 1(a)) that is approximated as a cantilever undamped single degree of freedom (SDOF) system with a mass at its free end (Figure 1(b)). The cantilever is assumed to be massless. Assume a wind load that is approximated with a concentrated harmonic forcing function p(t) = posin(ωt) acting on the mass. The known properties of the SDOF and the applied forcing function are given below. • Mass of SDOF: m =120 kip/g • Acceleration of gravity: g = 386 in/sec2 • Bending sectional stiffness of SDOF: EI = 1015 lbf×in2 • Height of SDOF: h = 2000 inches • Amplitude of forcing function: po = 6 kip • Forcing frequency: f = 8 Harrow_forwardAssume a Space Launch System (Figure 1(a)) that is approximated as a cantilever undamped single degree of freedom (SDOF) system with a mass at its free end (Figure 1(b)). The cantilever is assumed to be massless. Assume a wind load that is approximated with a concentrated harmonic forcing function p(t) = posin(ωt) acting on the mass. The known properties of the SDOF and the applied forcing function are given below. • Mass of SDOF: m =120 kip/g • Acceleration of gravity: g = 386 in/sec2 • Bending sectional stiffness of SDOF: EI = 1015 lbf×in2 • Height of SDOF: h = 2000 inches • Amplitude of forcing function: po = 6 kip • Forcing frequency: f = 8 Hz Figure 1: Single-degree-of-freedom system in Problem 1. Please compute the following considering the steady-state response of the SDOF system. Do not consider the transient response unless it is explicitly stated in the question. (a) The natural circular frequency and the natural period of the SDOF. (10 points) (b) The maximum displacement of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY