Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259638091
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.3, Problem 12.109P
To determine
Find the periodic time of comet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An artificial satellite circles the Earth in a circular orbit at a location where the
acceleration due to gravity is 9.791 m/s². Determine the orbitql period of the
satellite? Your answer should be a unit of time.
The new position is r = 6867.3(xhat) + 398.8(yhat).
The answer to the first problem would be theta = arctan(398.8/6867.3) = 0.058 degrees.
But how do you know how much the line of nodes, which is the new position as show in the diagram, should have rotated for a true sun-synchronoous orbit? What is the formula?
What are some reasons why there would be any discrepancy between the estimated angle and the actual angle?
2. Using the radial velocity technique, you observe an extrasolar planet about a1.2 M⊙ star. The peak velocity in the radial velocity curve is 20 m/s, and the period observedfrom the velocity curve is 25 days. What is the minimum mass of the planet (expressed interms of Jupiter masses)? (Be sure to include how the inclination factors in)
Chapter 12 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A golf ball is launched with the initial conditions shown in the figure. Determine the radius of curvature of the trajectory and the time rate of change of the speed of the ball (a) just after launch and (b) at apex. Neglect aerodynamic drag. 189 mi/hr Part 1 Correct (a) Just after launch, determine the speed of the ball, the total acceleration of the ball, the normal component of acceleration O, and the tangential component of acceleration o 13° a 130 11 13⁰arrow_forwardYou are interested in how long it takes for the ISS to naturally deorbit. Compute in the analytic approximation of the change in orbital elements per revolution and compare to the single-step approximation formula for the lifetime. I have attached an image of a formula for the change in semi-major axis per revolution and the formula to calculate the lifetime of a satellite. I want to know what H is and its value? Also, how do you compare the two because one is the change in semi-major axis and the other is lifetime?arrow_forwardThere are variety of errors that might affect the attitude motion of a spacecraft. Discuss what type of errors can be considered, and what kind of influence those errors might have on the resulting attitude motion. In all of our analysis so far, we have had an assumption that the orbit is circular. However, in general,we may also want to consider elliptic orbits depending on mission scenarios. Discuss how the equationsof motion and the subsequent analysis would be different if we consider elliptic orbits. Can we findrelative equilibrium solutions? How would the stability chart look like? Can we infer the attitudemotion in elliptic orbits from the circular orbit results?arrow_forward
- Imagine a very massive black hole with a small planet in orbit about it. The planet, has an orbital period of 4.6 days and an orbital radius of 5.86×105 km. From these pieces of infomration, determine the mass of the black hole.arrow_forwardThis question is based on satellites, so I kept it under mechanical engineering. The question is attached as an image.arrow_forwardFor the initial orbit determination from optical measurements using Gauss or Laplace, formulate analytically how to correct for the light travel time.arrow_forward
- a (m/s) B SpaceX engineers is planning to build a 2-stage rocket which has a-t graph as shown. By their design, the first stage A will bun out after 20 seconds and then the second stage B will ignite. Plot the v-t and s-t graphs which describe the two-stage motion of the missile for 0 sts 30s. 30 22 t (s) 20 30arrow_forwardCalculate the theoretical acceleration of the lightest spherical object using Newton's second law. Then compare this to the averages when the distance relative to the ramp was 10, 20, and 30 cm using percent error calculations. (Include a free body diagram of the set-up in your solution)arrow_forward3. The ropes and pulleys shown are very light and there is no friction. The 5 N block B and 50 N block A are released from rest. The blue rope and the red rope are different ropes. Figure 5.3: Rope2Masses.png (a) How fast are the two moving after 10 seconds? Solution lies between (92.84913, 28.7592) and (99.41422, 34.386) (b) What directions are they moving? Solution lies between (down, down) and (up, up)arrow_forward
- During the 2017 baseball season in a game against the Texas Rangers, Matt Bush (B) and Joey Gallo (A) collided while trying to catch an infield fly. Assume that they both started from rest at the same time and ft until he reached a maximum speed of 7.2 were initially 56 ft apart. Joey Gallo (A) accelerated at 15 82 ft and Matt Bush (B) accelerated at 3.2 until the collision. 8 Gif video of Mariners players colliding ft 82 a. Draw the v-t plots for both players on your written work. b. How many seconds passed before they collided? c. How many feet did Joey Gallo (A) run before colliding? ft d. How fast was Matt Bush (B) running (in when he collided?arrow_forwardplease answer do not image formatarrow_forwardDAMOSLOG, JELYN S. BSCE-I SEPTEMBER 21, 2021 T-F I1:30-1:00 PM PROBLEM: A RALL IS SEEN FALLNG DIRECTLY TO THE GROUND AT 250 m. THE VELOCITY OF IS m/s. HOW A HEIGHT THE BAUL AT THAT INSTANT FOUND TO BE HGH ABOVE THE GROUND IS THE BALL 3 SECONDS AFTER Ir WAS SEEN. 250ml DOM GIVEN: S= 250 m. as +9.81 /s2 Vo = I5 m/s H = ? C Height after 3 seconds) S = Vot t at? S= 15 (3) + (+9.81 "/sz(3)² S = +89. 145 m → Same direction oF DOM S= 89. 145 bELOW THe ORIGINOL POINT 250 m 89.145 m H = I60. 855m. > above the groundarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY