Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.1, Problem 12.39P
A single wire ACB passes through a ring at C attached to a sphere which revolves at a constant speed v in the horizontal circle shown. Knowing that the tension is the same in both portions of the wire, determine the speed v.
Fig. P12.39 and P12.40
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PROBLEM 12.34
A single wire ACB of length 2 m passes through a ring at C that is
attached to a sphere which revolves at a constant speed v in the horizontal
circle shown. Knowing that 0₁ = 60° and ₂ = 30° and that the tension is
the same in both portions of the wire, determine the speed v.
v = 2.49 m/s
A single wire ACB passes through a ring at C attached to a sphere that revolves at a constant speed v in the horizontal circle shown. Knowing that the tension is the same in both portions of the wire, determine the speed v.
1. A single wire ACB passes through a ring at C attached to a sphere
which revolves at a constant speed v in the horizontal circle shown.
Knowing that the tension is the same in both portions of the wire,
determine the speed v.
BI 30°
45°
C
5 kg
1.6 m
Chapter 12 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Prob. 12.1PCh. 12.1 - Prob. 12.2PCh. 12.1 - Prob. 12.3PCh. 12.1 - Prob. 12.4PCh. 12.1 - Prob. 12.5PCh. 12.1 - Prob. 12.6PCh. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.8PCh. 12.1 - 12.9 If an automobile’s braking distance from 90...Ch. 12.1 - Prob. 12.10PCh. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - Prob. 12.13PCh. 12.1 - Prob. 12.14PCh. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - 12.21 A baggage conveyor is used to unload luggage...Ch. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Prob. 12.25PCh. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Prob. 12.34PCh. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Prob. 12.36PCh. 12.1 - Prob. 12.37PCh. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - Prob. 12.42PCh. 12.1 - Prob. 12.43PCh. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - 12.50 A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - Prob. 12.71PCh. 12.1 - Prob. 12.72PCh. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials
Find the change in length of side AB.
Mechanics of Materials, 7th Edition
What types of polymers are most commonly blow molded?
Degarmo's Materials And Processes In Manufacturing
The spring of k and unstretched length 1.5R is attached to the disk at a radial distance of 0.75R from the cent...
Engineering Mechanics: Statics
Assume the following vectors are already defined: V1=[302]V2=[214]V3=[5131]V4=[0.50.10.20.2] For each of the fo...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
Heat and Mass Transfer: Fundamentals and Applications
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Engineering dynamics 1. dtermine the speed 2. determine the tension T is the mass is 10lbsarrow_forward(2) A 5 lb ball is attached to a 3 ft long rope and it rotates in a vertical circular path at a constant tangent velocity of 30 ft/s. (a) Determine the tension in the rope when the ball is at point A. (b) Determine the tension in the rope when the ball is at point B. B 3 ft Aarrow_forward17.81 A 1.8-kg collar A and a 0.7-kg collar B can slide without friction on a frame, consisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about its vertical axis of symmetry. The two collars are connected by a cord running over a pulley that is attached to the frame at O. At the instant shown, the velocity v of collar A has a magnitude of 2.1 m/s and a stop prevents collar B from moving. The stop is suddenly re- moved and collar A moves toward E. As it reaches a distance of 0.12 m from O, the magnitude of its velocity is observed to be 2.5 m/s. Determine at that instant the magnitude of the angular velocity of the frame and the moment of inertia of the frame and pulley system about CD. Fig. P17.81 01marrow_forward
- A small, 300-g collar D can slide on portion AB of a rod which is bent as shown. Knowing that a = 40° and that the rod rotates about the vertical AC at a constant rate of 5 rad/s, determine the value of r for which the collar will not slide on the rod if the effect of friction between the rod and the collar is neglected. B D aarrow_forwardPleease don't provide handwritten solution ....arrow_forward12.92 Two 2.6-lb collars A and B can slide without friction on a frame, con- sisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about CD. The two collars are connected by a cord running over a pulley that is attached to the frame at O, and a stop prevents collar B from moving. The frame is rotating at the rate 0 = 12 rad/s and r = 0.6 ft when the stop is removed, allowing collar A to move out along rod OE. Neglecting friction and the mass of the frame, deter- mine, for the position r = 1.2 ft, (a) the transverse component of the velocity of collar A, (b) the tension in the cord and the acceleration of collar A relative to the rod OE. D B Fig. P12.92 A Earrow_forward
- The sliders A and B are connected by a light rigid bar and move with negligible friction in the slots, both of which lie in a vertical plane. For the position shown, the hydraulic cylinder imparts a velocity and acceleration to slider A of 0.4 m/s and 2 m/s, 3 kg 05 m respectively, both to the right. Determine the acceleration of slider B and the force in the 60 bar at this instant. Fig.P2arrow_forwardProblem #2 A collar of mass m is attached to a spring and slides without friction along a circular rod in a vertical plane. The spring has an undeformed length of 5 in. and a constant k. Knowing that the collar has a speed v at Point C, draw the FBD and KD of the collar at this point. 5 in. 7 in. |Barrow_forwardThe crate/box shown has a square shape, an in-plane size of 10 ft X 10 ft and a uniformly distributed 300 lb weight. It is hung on an overhead roller conveyer and being transported. The crate is at rest when a horizontal force P of 40 lb is applied at the point E, which is 4 ft above the bottom of the box. Knowing that the crate starts to move from rest and at the instant t it reaches a speed of 9.3 ft/s. Neglect the frictions at the hinges A and B and between the rollers and the rail track. Answer the following questions: a) Draw FBD and KD of the box. b) What kind of motion the crate is moving in? c) Write out the motion equations. d) Find the acceleration at the crate's mass center and the pin forces at A and B. e) Determine the distance d and time t of the motion when the speed reaches 9.3 ft/s. A B P 10 ft E 4 ft D + 10 ftarrow_forward
- F The retractable shelf shown is supported by two identical linkage-and-spring systems; only one of the systems is shown. A 20-kg machine is placed on the shelf so that half of its weight is supported B 300 mm 30° 30° E by the system shown. If the springs are removed and the system is released from rest, determine (a) the acceleration of the machine, (b) the D 80 mm 100 mm A 80 mm | 30° tension in link AB. Neglect the weight of the shelf 200 mm and links. 50 mm 100 mmarrow_forwardDynamics, please solve correctly and understandable.arrow_forwardA uniform rod BC of mass 4 kg is connected to a collar A by a A 250 mm 250-mm cord AB. Neglecting the mass of the collar and cord, determine (a) the smallest constant acceleration aa for which the cord and the rod lie in a straight line, (b) the corresponding В 400 mm tension in the cord. 350 mm Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY