Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.1, Problem 12.24P
An airplane has a mass of 25 Mg and its engines develop a total thrust of 40 kN during take-off. If the drag D exerted on the plane has a magnitude D = 2.25v2, where v is expressed in meters per second and D in newtons, and if the plane becomes airborne at a speed of 240 km/h, determine (a) the length of runway required for the plane to take off, (b) the time required to take off.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cart is loaded with a brick and pulled at constant speed along an inclined
plane to the height of a seat-top. If the mass of the loaded cart is 3.0 kg and the
height of the seat top is 0.45 meters, then what is the potential energy of the
loaded cart at the height of the seat-top?
A
If a force of 14.7 N is used to drag the loaded
cart (from previous question) along the
incline for a distance of 0.90 meters, then
how much work is done on the loaded cart?
Rocket sleds were used to test aircraft and its effects on human subjects at high speeds. It is
consisted of four rockets; each rocket creates an identical thrust T.
أحسبه المود
Calculate the magnitude of force exerted by each rocket (T)
for the four-rocket propulsion system shown in the Figure.
The sled's initial aceeleration is 49 m/s. the mass of the
system is 2100 kg, and the force of friction opposing the
motion is known to be 650 N.
T.
T.
T.
Solution: H.W
Free body diagram
The resistance to motion is
given by
R, = (0.011 · 0.000 06 5 Mg
+ 0.028 AV²
where M is the mass in kg, V is
velocity in
km/h and A is the frontal area in i:?.
A jeep of 1400 kg mass and 2.4-m² frontal
area is used to pull a trailor with a gross mass of
800 kg at 50 km/h in top gear on level road. If the
jeep is capable of developing 40 kW of power for
propulsioro ofd whether it is adequate for the
job. The trałvsmission efficiency may be taken as
92%. Also, find tkr vll on the coupling at this
speed.
If all the power is used by the loading trailor,
determine the pull in the coupling at 50 km/h
and the load put on the trailor.
Chapter 12 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Prob. 12.1PCh. 12.1 - Prob. 12.2PCh. 12.1 - Prob. 12.3PCh. 12.1 - Prob. 12.4PCh. 12.1 - Prob. 12.5PCh. 12.1 - Prob. 12.6PCh. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.8PCh. 12.1 - 12.9 If an automobile’s braking distance from 90...Ch. 12.1 - Prob. 12.10PCh. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - Prob. 12.13PCh. 12.1 - Prob. 12.14PCh. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - 12.21 A baggage conveyor is used to unload luggage...Ch. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Prob. 12.25PCh. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Prob. 12.34PCh. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Prob. 12.36PCh. 12.1 - Prob. 12.37PCh. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - Prob. 12.42PCh. 12.1 - Prob. 12.43PCh. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - 12.50 A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - Prob. 12.71PCh. 12.1 - Prob. 12.72PCh. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The triple jump is a track-and-field event in which an athlete gets a running start and tries to leap as far as...
Vector Mechanics For Engineers
The moment of inertia Iy for the slender rod in terms of the rod’s total mass m .
Engineering Mechanics: Statics & Dynamics (14th Edition)
The spring of k and unstretched length 1.5R is attached to the disk at a radial distance of 0.75R from the cent...
Engineering Mechanics: Statics
Repeat Problem 4-6 except solve by the vector loop method.
DESIGN OF MACHINERY
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
For the beam loading of Figure P334, draw the complete shearing force and bending moment diagrams, and determin...
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is the maximum velocity attained by the block as it moves up the ramp? Express your answer to three significant figures with appropriate units.arrow_forwardA 7.8-Mg truck is resting on the deck of a barge which displaces 374 Mg and is at rest in still water. If the truck starts and drives toward the bow at a speed relative to the barge vrel = 5.6 km/h, calculate the speed v of the barge. The resistance to the motion of the barge through the water is negligible at low speeds. Vrel = 5.6 km/h 7.8 Mg %3D 374 Mg Answer: v = km/harrow_forwardThe radius of a highway curve is 120m, and has an angle of 9.31 from the horizontal. The center of gravity of the car is located 0.80m above the roadway and the distance between the two front wheels is 1.2m. if the car has a total weight of 15KN, a. Determine the normal acceleration (m/s2) and the velocity (in kph) of the car before overturning? Assume that friction is great enough to prevent sliding. b. Find the maximum velocity of the car could move in the curve so that there will be no pressure between the tires and the roadway, kph. c. What is the velocity of the car to prevent sliding up if the coefficient of kinetic friction is 0.60?arrow_forward
- Using a simple pulley/rope system, a crewman on an Arctic expedition is trying to lower a 6.56 kg crate to the bottom of a steep ravine of 24.7 meters. The 60.9 kg crewman is carefully lowering the crate at a constant speed of 1.50 m/s. Unfortunately, when the crate reaches a point of 13.7 meters above the ground, the crewman slips and the crate immediately accelerates toward the ground dragging the crewman across the ice and toward the edge of the cliff. Assuming no friction, at what speed does the crate hit the ground? Also, assume that the rope is long enough to hit the ground. At what speed does the crewman hit the bottom of the ravine? Assume no air friction.arrow_forwardPrinciple of Angular Impulse and Momentum To apply the principle of angular impulse and momentum to find final speed and the time to reach a given speed. As shown, ball B, having a mass of 10.0 kg, is attached to the end of a rod whose mass can be neglected. Finding the final speed of the ball If the rod is 0.550 m long and subjected to a torque M=(1.95t2+3.75) N⋅m, where t is in seconds, determine the speed of the ball when t=4.80 s. The ball has a speed of v=2.25 m/s when t=0 Finding the time needed to reach a specific speed If the shaft is 0.250 m long, the ball has a speed of v=2.85 m/s when t=0, and the rod is subjected to a torque M=(3.40t+2.15) N⋅m, where t is in seconds, determine the time it will take for the ball to reach a speed of 5.80 m/s.arrow_forwardTwo cars collide at an intersection. Car A, with a mass of 2027 kg, is going from west to east, while car B, of mass 1535 kg, is going from north to south at 18 m/s. As a result of this collision, the two cars stick together and they moved at an angle of 65° south of east from the point of impact. How fast (in m/s) were the entangled cars moving just after the collision? North |B West - East Southarrow_forward
- A spring-loaded device imparts an initial vertical velocity of 58 m/s to a 0.11-kg ball. The drag force on the ball is Fp = 0.0021v², where Fp is in newtons when the speed v is in meters per second. Determine the maximum altitude h attained by the ball (a) with drag considered and (b) with drag neglected. 1b = 58 m/s Answers: 0.11 kg (a) With drag: h = i (b) Without drag: h= i m marrow_forwardSolve it for my review, write the answerarrow_forwardDuring an Olympic 100-m sprint race, Usain Bolt, the world record holder in that race, quickly accelerates to his top speed of 12.4 m/s. Analysis of his technique has shown that each of his feet make contact with the ground for 0.0800 s, exerting a force of magnitude 2.80 x 10° N during this contact. This allows the 94.0 kg Bolt to leap forward and remain airborne for 0.120 s until the next foot touches the ground. (Ignore air resistance.) (a) What are the magnitudes of the horizontal and vertical components of the force (in N) Bolt's feet exert on the ground? (Round your answers to at least three significant figures.) horizontal N vertical (b) Assuming that the sprinter accelerates at a constant rate while his feet are in contact with the ground and does not slow down when he is airborne, by what amount does Bolt's horizontal speed (in m/s) increase with each step? (Round your answer to at least three significant figures.) m/s (c) Assuming that the sprinter's speed increases at a…arrow_forward
- A 1400-kg automobile starts from rest and travels 400 m during a performance test. The motion of the automobile is defined by the relation x= 4000 ln(cosh 0.03t), where x and t are expressed in meters and seconds, respectively. The magnitude of the aerodynamic drag is D = 0.35v2 , where D and v are expressed in newtons and m/s, respectively. Determine the power dissipated by the aerodynamic drag when (a) t= 10 s, (b) t= 15 s.arrow_forwardA 10.1-Mg truck is resting on the deck of a barge which displaces 209 Mg and is at rest in still water. If the truck starts and drives toward the bow at a speed relative to the barge Vrel = 7.8 km/h, calculate the speed v of the barge. The resistance to the motion of the barge through the water is negligible at low speeds. 209 Mg Answer: v= i 7.8 km/h 10.1 Mg km/harrow_forwardA space shuttle is in a circular orbit at an altitude of 103 mi. Calculate the absolute value of g at this altitude and determine the corresponding weight of a shuttle passenger who weighs 165 lb when standing on the surface of the earth at a latitude of 45°. Are the terms "zero-g" and "weightless," which are sometimes used to describe conditions aboard orbiting spacecraft, correct in the absolute sense? Answers: ft/sec² Sh lb Wh= iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY