Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.1, Problem 12.51P
(a)
To determine
Find the speed
(b)
To determine
Find the normal force experienced by an 80-kg rider.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 50 Ib block A is attached to a wire that is wrapped around the
shown flywheel of 30" radius and I = 12 ft-lb-s². The system is
released from the rest. Neglect the effect of friction, determine
(a) the acceleration of the block A, (b) the speed of the block A
after it has moved 10 ft.
A
The "flying car" is a ride at an amusement park which
consists of a car having wheels that roll along a track
mounted inside a rotating drum. By design the car cannot
fall off the track, however motion of the car is developed by
applying the car's brake, thereby gripping the car to the
track and allowing it to move with a constant speed of the
track, vt = 3 m/s. The rider applies the brake when going
from B to A and then releases it at the top of the drum, A,
so that the car coasts freely down along the track to B
(0 = π rad). Neglect friction during the motion from A to
B. The rider and car have a total mass of 390 kg and the
center of mass of the car and rider moves along a circular
path having a radius of R = 9.8 m. (Figure 1)
Figure
R
B
A block with some mass m is connected to a string that is attached to the ceiling. The block on the end of the string is going around a circular path with a constant radius r and constant speed. Applying Newton's second law to the x component of force seperately in order to find the expressions for the tension of the string in terms of mass m, angle θ, and constant g. The x direction includes centripetal acceleration.
Chapter 12 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Prob. 12.1PCh. 12.1 - Prob. 12.2PCh. 12.1 - Prob. 12.3PCh. 12.1 - Prob. 12.4PCh. 12.1 - Prob. 12.5PCh. 12.1 - Prob. 12.6PCh. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.8PCh. 12.1 - 12.9 If an automobile’s braking distance from 90...Ch. 12.1 - Prob. 12.10PCh. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - Prob. 12.13PCh. 12.1 - Prob. 12.14PCh. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - 12.21 A baggage conveyor is used to unload luggage...Ch. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Prob. 12.25PCh. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Prob. 12.34PCh. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Prob. 12.36PCh. 12.1 - Prob. 12.37PCh. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - Prob. 12.42PCh. 12.1 - Prob. 12.43PCh. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - 12.50 A 54-kg pilot flies a jet trainer in a...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - Prob. 12.71PCh. 12.1 - Prob. 12.72PCh. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - Prob. 12.128RPCh. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. (25) The small 2-kg block A slides down the curved path and passes the lowest point B with a speed of 4 m/s. If the radius of curvature of the path at B is 1.5 m, and the coefficient of friction between the block and path is 0.3, determine (a) the normal force exerted on the block by the path at B, and (b) the rate of change of speed at this point. Barrow_forwardA robot arm moves in the vertical plane so that the 0.14-kg cylinder P travels in a circle about point B, which is not moving. Know that arm BP starts from rest in a horizontal position and that the speed of Pincreases at a constant rate of 200 mm/s². 0.8 m Draw the free-body diagram of the cylinder P that is required to determine the force acting on the cylinder. (You must provide an answer before moving on to the next part.) 0.8 m P 1 Iarrow_forward2. A block travels past point A with a speed of 8 m/s along a smooth surface until it reaches a rough surface of length L=20 m and a coefficient of kinetic friction of 0.8. If the height h₁ = 8 m, and h₂ = 3 m. Determine (A) the speed of the block at point B (B) whether the speed at point C (C) reaches point D. If so, what is the speed at point D, if not, how far is the rough surface that cross the beam?arrow_forward
- Q2. The cord passes over a massless and frictionless pulley, as shown, carrying a mass 4m at one end and connected to a cylinder of mass 2m and radius of R that rolls on an inclined plane of 30'. What is the acceleration of the cylinder and tensions in the cable? Frictionless pulley 4m 2m ** ******* 30arrow_forward8. A block (mass m1) lying on a frictionless inclined plane is connected to a mass m2 by a massless cord passing over a pulley. (a) Determine a formula for the acceleration of the system of the two blocks in terms of m1, m2, Theta, and g. (b ) What conditions apply to masses m1, and m2 for the acceleration to be in one direction (say m1 down the plan) or in the opposite direction ?arrow_forwardCalculate the vertical acceleration a (positive if up, negative if down) of the 94-lb cylinder for each of the two cases illustrated. Neglect friction and the mass of the pulleys. 94 ib 94 lb 141 b 141 Ib (a) (b)arrow_forward
- I Review | Constants Calculate the work done on the block by the spring as the block falls an arbitrary distance z. Express your answer in terms of the variables a, m, x, and the acceleration due to gravity g, if needed. Consider a hanging spring of negligible mass that does not obey Hooke's law. When the spring is pulled downward by a distance r, the spring exerts an upward force of magnitude ar, where a is a positive constant. Initially the hanging spring is relaxed (not extended). We then attach a block of mass m to the spring and release the block. The block stretches the spring as it falls (Figure 1). (a) How fast is the block moving when it has fallen a distance z, ? (b) At what rate does the spring do work on the block at this point? (c) Find • View Available Hint(s) the maximum distance rz that the spring stretches. (d) Will the block remain at the point found in part (c)? W. Vspring = Submit Part D Calculate the work done on the block by any other forces as the block falls an…arrow_forwardQuestion (2): The spring-mounted 0.7-kg collar A oscillates along the horizontal rod, which is rotating at the constant angular rate è = 5 rad/s. At a certain instant, r is increasing at the rate of 900 mm/s. If the coefficient of kinetic friction between the collar and the rod is 0.4, calculate the friction force F exerted by the rod on the collar at this instant. Vertical do икон F D 900mm/s Aarrow_forwardIt is known that the mass of the 1,2,3 block is the same, which is 2 kg. The mass of block 4 is equal to the mass of block 5. The system is at rest. Neglect the masses of all ropes, Springs, and pulleys. If the magnitude of the acceleration due to gravity. g= 10 m/s², determine: a. Rope tension I b. Rope tension 3 c. The forces acting lincluding direction and magnitude) on blocks 2 and 3 as I unit ( two blocks are seen as 1 point object) d. Acceleration of block 4 when rope 3 is cut e. The force acting on block 3 if rope 2 is cutarrow_forward
- Knowing that the coefficient of static friction between the tires and the road is 0.80 for the automobile shown, determine the maximum possible acceleration on a level road, assuming rear- wheel drive 20 in. 60 in. 40 in.arrow_forwardA crate is released from rest on a 20 degree incline as shown in the figure below. The coefficient of kinetic friction between the crate and the incline is 0.2. Determine the distance which the crate must travel before it reaches a speed of 4 m/s.arrow_forwardASAParrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY