Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 24P
You’re a highway safety engineer, and you’re asked to specify bolt sizes so the traffic signal in Fig. 12.16 won’t fall over. The figure indicates the masses and positions of the structure’s various parts. The structure is mounted with two bolts, located symmetrically about the vertical member's centerline, as shown. What tension force must the left-hand bolt be capable of with-standing?
FIGURE 12.16 Problem 24
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform stick can be balanced on a knife edge 10cm from one end when a load of 200N is hung from that end. When the knife edge is moved 5cm further from the end, the 200N load has to be moved to a point 8.75cm from the knife edge to obtain a balance. Find the length of the stick and its weight.
As part of an engineering design, a load of mass M2=10 kg is to be suspended from
the far end of a beam of mass M1=8kg. A horizontal cable supporting the beam
attaches to the beam at a distance of d=2m from a joint/hinge. The length of the
beam is L=7m. The beam makes an angle of 55 degrees with the horizontal.
M,
2
a. What magnitude of force should the cable be able to withstand in this setup?
b. What magnitude of force should the joint/hinge be able to withstand in this setup?
A uniform beam has a length of 15.4 m and a mass of 37.2 kg. The beam is horizontal and resting (in equilibrium) on two supports. One of the supports is located 4.37m to the right of the beam's center of mass. The second support is located 2.06 m to the left of the beam's center of mass. How much upward force is exerted on the beam by the second support?
Chapter 12 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 12.1 - The figure shows three pairs of forces acting on...Ch. 12.2 - Prob. 12.2GICh. 12.3 - The figure shows a person in static equilibrium...Ch. 12.4 - Prob. 12.4GICh. 12 - Give an example of an object on which the net...Ch. 12 - Give an example of an object on which the net...Ch. 12 - Prob. 3FTDCh. 12 - Pregnant women often assume a posture with their...Ch. 12 - When you carry a bucket of water with one hand,...Ch. 12 - Is a ladder more likely to slip when you stand...
Ch. 12 - How does a heavy keel help keep a boat from...Ch. 12 - Does choosing a pivot point in an equilibrium...Ch. 12 - If you take the pivot point at the application...Ch. 12 - A short dog and a tall person are standing on a...Ch. 12 - Prob. 11FTDCh. 12 - A body is subject to three forces; F1=1i+2jN,...Ch. 12 - To demonstrate that the choice of pivot point...Ch. 12 - In Fig. 12.11 the forces shown all have the same...Ch. 12 - Figure 12.12a shows a thin, uniform square plate...Ch. 12 - Repeat the preceding problem for the equilateral...Ch. 12 - A 23-m-long log of irregular cross section lies...Ch. 12 - A 60-kg uniform board 2.4 m long is supported by a...Ch. 12 - Where should the child in Fig. 12.14 sit if the...Ch. 12 - A 4.2-m-long beam is supported by a cable at its...Ch. 12 - Figure 12.15 shows how a scale with a capacity of...Ch. 12 - A portion of a roller-coaster track is described...Ch. 12 - Prob. 23ECh. 12 - Youre a highway safety engineer, and youre asked...Ch. 12 - Figure 12.17a shows an outstretched arm with mass...Ch. 12 - A uniform sphere of radius R is supported by a...Ch. 12 - You work for a garden equipment company, and youre...Ch. 12 - Figure 12.20 shows the fool and lower leg of a...Ch. 12 - A uniform 5.0-kg ladder is leaning against a...Ch. 12 - The boom in the crane of Fig. 12.21 is free to...Ch. 12 - A uniform board of length L and weight W is...Ch. 12 - Figure 12.23 shows a 1250-kg car that has slipped...Ch. 12 - Repeat Example 12.2, now assuming that the...Ch. 12 - You are headwaiter at a new restaurant, and your...Ch. 12 - Climbers attempting to cross a stream place a...Ch. 12 - A crane in a marble quarry is mounted on the...Ch. 12 - A rectangular block measures w w L, where L is...Ch. 12 - The potential energy as a function of position for...Ch. 12 - A rectangular block of mass m measures w w L,...Ch. 12 - A 160-kg highway sign of uniform density is 2.3 m...Ch. 12 - A 5.0-m-long ladder has mass 9.5 kg and is leaning...Ch. 12 - Prob. 42PCh. 12 - A uniform, solid cube of mass m and side s is in...Ch. 12 - An isosceles triangular block of mass m and height...Ch. 12 - Youre investigating ladder safety for the Consumer...Ch. 12 - A 2.0-m-long rod has density in kilograms per...Ch. 12 - What horizontal force applied at its highest point...Ch. 12 - A rectangular block twice as high as it is wide is...Ch. 12 - What condition on the coefficient of friction in...Ch. 12 - A uniform solid cone of height h and base diameter...Ch. 12 - Prove the statement in Section 12.1 that the...Ch. 12 - Three identical books of length L are stacked over...Ch. 12 - A uniform pole of mass M is at rest on an incline...Ch. 12 - For what angle does the situation in Problem 53...Ch. 12 - Figure 12.31 shows a popular system for mounting...Ch. 12 - The nuchal ligament is a thick, cordlike structure...Ch. 12 - A 4.2-kg plant hangs from the bracket shown in...Ch. 12 - The wheel in Fig. 12.34 has mass M and is weighted...Ch. 12 - An interstellar spacecraft from an advanced...Ch. 12 - Youre called to testify in a product liability...Ch. 12 - Youre designing a vacation cabin at a ski resort....Ch. 12 - Prob. 62PCh. 12 - Engineers designing a new semiconductor device...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
Level 1: Knowledge/Comprehension 1. In the term trace element, the adjective trace means that (A) the element i...
Campbell Biology (11th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Using the South Atlantic as an example, label the beginning of the normal polarity period C that began 2 millio...
Applications and Investigations in Earth Science (9th Edition)
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A wooden door 2.1 m high and 0.90 m wide is hung by two hinges 1.8 m apart. The lower hinge is 15 cm above the bottom of the door. The center of mass of the door is at its geometric center, and the weight of the door is 260 N, which is supported equally by both hinges. Find the horizontal force exerted by each hinge on the door.arrow_forwardA stepladder of negligible weight is constructed as shown in Figure P10.73, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately.arrow_forwardA stepladder of negligible weight is constructed as shown in Figure P12.40, with AC = BC = = 4.00 m. A painter of mass m = 70.0 kg stands on the ladder d = 3.00 m from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P12.40 Problems 40 and 41.arrow_forward
- Problems 33 and 34 are paired. One end of a uniform beam that weighs 2.80 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable. FIGURE P14.33 Problems 33 and 34.arrow_forwardA 400.0-N sign hangs from the end of a uniform strut. The strut is 4.0 m long and weighs 600.0 N. The strut is supported by a hinge at the wall and by a cable whose other end is tied to the wall at a point 3.0 m above the left end of the strut. (a) What is the y component of the tension in the rope? (b) What is the x component of the tension in the rope? (c) What is the magnitude of the tension in the rope? (a) y component of the tension: Ty = (b) x component of the tension: Tx = (c) What is the magnitude of the tension in the rope?arrow_forwardA 22.3 kg uniform beam is in static equilibrium. The mass of the object at the end of the beam is 43.7 kg. What is the magnitude of the tension force holding the beam? Assume the hinge is frictionlessarrow_forward
- Suppose the length L of the uniform bar is 3.0 m and its weight is 210 N. The block's weight is 340 N and is located at distance x = 0.75 m from the wall, and the angle = 25°. What are the (a) horizontal and (b) vertical components of the force on the bar from the hinge at A? com 4.arrow_forwardA uniform beam of weight 19 N and length 6.0 m is mounted by a small hinge on a wall at it left end. The beam is held in a horizontal position by a vertical rope at the location as shown. What is the magnitude of the tension force in the rope, in Newtons?arrow_forwardA uniform beam has a length of 15.2 m and a mass of 37.3 kg. The beam is horizontal and resting (in equilibrium) on two supports. One of the supports is located 4.09m to the right of the beam's center of mass. The second support is located 1.96 m to the left of the beam's center of mass. How much upward force is exerted on the beam by the first support?arrow_forward
- A 1220N uniform boom is supported by a cable perpendicular to the boom, as seen in the figure below. The boom is hinged at the bottom, and an m=2120N weight hangs from its top. Assume the angles to be a=60.7deg and 0=(90.0°- a). Ꮎ Ө ja m Find the tension in the supporting cable. Submit Answer Tries 0/10 Find the x-components of the reaction force exerted on the boom by the hinge (choose to the right as positive). Submit Answer Tries 0/10 Find the y-components of the reaction force exerted on the boom by the hinge (choose upwards as positive). Submit Answer Tries 0/10arrow_forwardResting horizontally, a wheelbarrow has a total mass of 76 kg, with its center of gravity 15 cm from the wheel axle.A person grips the handles 1.4 m from the wheel axle. What total vertical force must the person exert to lift it?arrow_forwardA hungry bear weighing 735 N walks out on a beam in an attempt to retrieve a basket of goodies hanging at the end of the beam (see the figure below). The beam is uniform, weighs 200 N, and is 5.00 m long, and it is supported by a wire at an angle of θ = 60.0°. The basket weighs 80.0 N. A horizontal plank is attached at the left end to a vertical wall. A rod with a pulley at the right end extends a distance x horizontally to the right from the wall above the plank. A cable connected to the wall just above the rod goes around the pulley then down and right to the end of the plank, making an acute angle θ with the plank. A basket of goodies hangs down from the right end of the plank and a bear stands on the plank below the rod a distance x from the wall. (a) Draw a force diagram for the beam. (Submit a file with a maximum size of 1 MB.) This answer has not been graded yet. (b) When the bear is at x = 1.16 m, find the tension in the wire supporting the beam. NWhen the bear is at x…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY