Concept explainers
A uniform sphere of radius R is supported by a rope attached to a vertical wall, as shown in Fig. 12.18. The rope joins the sphere at a point where a continuation of the rope would intersect a horizontal line through the sphere’s center a distance
FIGURE 12.18 Problem 26
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Organic Chemistry (8th Edition)
Human Anatomy & Physiology (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Cosmic Perspective Fundamentals
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- One end of a uniform ℓ = 4.40-m-long rod of weight w is supported by a cable at an angle of ? = 37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is ?s = 0.570. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A._______________________ marrow_forwardChapter 12, Problem 028 GO In the figure, suppose the length L of the uniform bar is 2.7 m and its weight is 220 N. Also, let the block's weight W = 280 N and the angle 0 = 27°. The wire can withstand a maximum tension of 440 N. (a) What is the maximum possible distance x before the wire breaks? With the block placed at this maximum x, what are the (b) horizontal and (c) vertical components of the force on the bar from the hinge at A? com A (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question: Open Show Workarrow_forwardOne end of a uniform € = 4.60-m-long rod of weight w is supported by a cable at an angle of 8 = 37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is μ = 0.455. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point A. Qarrow_forward
- Chapter 12, Problem 028 GO In the figure, suppose the length L of the uniform bar is 3.1 m and its weight is 240 N. Also, let the block's weight W = 270 N and the angle e = 41°. The wire can withstand a maximum tension of 420 N. (a) What is the maximum possible distance x before the wire breaks? With the block placed at this maximum x, what are the (b) horizontal and (c) vertical components of the force on the bar from the hinge at A? Com (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardA uniform rod is attached to a wall by a hinge at its base. The rod has a mass of 8.5 kg, a length of 1.8 m, is at an angle of 21° above the horizontal, and is held in place by a horizontal cord attached to the other end of the rod and bolted to the wall above the base of the rod. (a) Determine the tension in the cord. (b) Determine the horizontal and vertical components of the force exerted on the rod by the hinge. FH %3D Fv = %3Darrow_forwardProblem 19 A uniform ladder is 10 m long and weighs 200 N. The ladder leans against a vertical, frictionless wall at heighth 8.0 m above the ground. A horizontal force Fis applied to the ladder at distance d = 2.0m from its base (measured along the ladder). أ (a) If the force magnitude is F = 50 N, what is the necessary friction (magnitude and direction) on the floor to keep the ladder stable? (b) Suppose the coefficient of static friction between the floor and the ladder is 0.5, find the maximum magnitude of force F just before the ladder starts to move.arrow_forward
- As part of an engineering design, a load of mass M2=10 kg is to be suspended from the far end of a beam of mass M1=8kg. A horizontal cable supporting the beam attaches to the beam at a distance of d=2m from a joint/hinge. The length of the beam is L=7m. The beam makes an angle of 55 degrees with the horizontal. M, 2 a. What magnitude of force should the cable be able to withstand in this setup? b. What magnitude of force should the joint/hinge be able to withstand in this setup?arrow_forwardA uniform ladder is 10 m long and weighs 200 N. The ladder leans against a vertical, frictionless wall at a height of h = 8.0 m. A horizontal force is applied to the ladder at a distance d = 2.0 m from its base (as measured along the ladder). Suppose the coefficient of static friction is .38; for what minimum value of the horizontal force applied will the base of the ladder just barely start to move TOWARD the wall? Be sure to draw in all forces acting on the ladderarrow_forwardA tightrope walker stands on a wire that is supported by a pole at each end. The tightrope walker creates a tension of 3.42 ✕ 103 N in a wire making an angle 6.2° below the horizontal with each supporting pole. Calculate how much this tension stretches the steel wire (in cm) if it was originally 16 m long and 0.50 cm in diameter. There is no accompanying image. This is the complete question.arrow_forward
- 6m T 10m A 8m Figure 4 A B 6. A horizontal beam AB of mass m = 20kg is supported from end B by a cable and hinged to a A vertical wall at end A. Calculate the magnitude of the tension T in the cable when Batman, who has a mass M = 80 kg, stands midway along the beam. What are the x and y components of the force at the hinge?arrow_forwardA box with mass 178kg is supported by the cable system at B. Chord AB has a length of 1.2m and the force that develops in the chord is 3130N The horisontal distance between points A and C is 1.7m. Determine the force that develops in chord BC and the vertical height y and complete parts (a) and (b) below.arrow_forwardIn the figure, suppose the length L of the uniform bar is 3.5 m and its weight is 150 N. Also, let the block's weight W=340 N and the angle 0-33". The wire can withstand a maximum tension of 370 N. (a) What is the maximum possible distance x before the wire breaks? With the block placed at this maximum x, what are the (b) horizontal and (c) vertical components of the force on the bar from the hinge at A? (a) Number i Units (b) Number i Units (c) Number i Units com A B Εarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning