Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 15E
Figure 12.12a shows a thin, uniform square plate of mass m and side L. The plate is in a vertical plane. Find the magnitude of the gravitational torque on the plate about each of the three points shown.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A space station is to be constructed in the shape of a uniform hollow ring of mass M = 4,750 kg and radius R = 150 m. Members of the
crew will walk on a deck formed by the inner surface of the outer cylindrical wall of the ring. The ring will be set to rotate (from rest) about
its axis with an angular acceleration of 0.050 rad/s² for 67.1 seconds. What will be the space station's angular momentum L, after it has
reached its target rotation?
O 4.43 x 108 kg-m²/s
O 5.52 x 108 kg-m²/s
O 2.81 x 108 kg-m²/s
O 3.22 x 107 kg-m²/s
O 3.59 x 10 kg-m²/s'
MacB
W
A space station is to be constructed in the shape of a uniform hollow ring of mass M = 50,000 kg and radius R = 150 m. Members of the
crew will walk on a deck formed by the inner surface of the outer cylindrical wall of the ring. The ring will be set to rotate about its axis so
that the people standing inside experience a tangential acceleration equal to 6.00 m/s?. What torque T will produce its target
acceleration?
O 4.50 x 107 N-m
O 3.29 x 10 N-m
O 1.78 x 107 N-m
O 2.56 x 10 N-m
O 5.17 x 107 N-m
Consider a rod of total length 4 m that is free to pivot above its center. The linear mass density of the rod is given by λ(x) = 6 x4 (kg/m), where x is the distance from the center of the rod. The rod is in outer space, so you don't have to worry about any gravitational torques. There is a 168 N force that acts perpendicularly to the rod at its right end, and there is a 512 N force that acts halfway between the left end of the rod and its center. This force acts at an angle of 33 degrees to the vertical. This scenario is shown below:
Calculate the angular acceleration of the rod, in rad/s2. The answer could be positive or negative.
(Please answer to the fourth decimal place - i.e 14.3225)
Chapter 12 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 12.1 - The figure shows three pairs of forces acting on...Ch. 12.2 - Prob. 12.2GICh. 12.3 - The figure shows a person in static equilibrium...Ch. 12.4 - Prob. 12.4GICh. 12 - Give an example of an object on which the net...Ch. 12 - Give an example of an object on which the net...Ch. 12 - Prob. 3FTDCh. 12 - Pregnant women often assume a posture with their...Ch. 12 - When you carry a bucket of water with one hand,...Ch. 12 - Is a ladder more likely to slip when you stand...
Ch. 12 - How does a heavy keel help keep a boat from...Ch. 12 - Does choosing a pivot point in an equilibrium...Ch. 12 - If you take the pivot point at the application...Ch. 12 - A short dog and a tall person are standing on a...Ch. 12 - Prob. 11FTDCh. 12 - A body is subject to three forces; F1=1i+2jN,...Ch. 12 - To demonstrate that the choice of pivot point...Ch. 12 - In Fig. 12.11 the forces shown all have the same...Ch. 12 - Figure 12.12a shows a thin, uniform square plate...Ch. 12 - Repeat the preceding problem for the equilateral...Ch. 12 - A 23-m-long log of irregular cross section lies...Ch. 12 - A 60-kg uniform board 2.4 m long is supported by a...Ch. 12 - Where should the child in Fig. 12.14 sit if the...Ch. 12 - A 4.2-m-long beam is supported by a cable at its...Ch. 12 - Figure 12.15 shows how a scale with a capacity of...Ch. 12 - A portion of a roller-coaster track is described...Ch. 12 - Prob. 23ECh. 12 - Youre a highway safety engineer, and youre asked...Ch. 12 - Figure 12.17a shows an outstretched arm with mass...Ch. 12 - A uniform sphere of radius R is supported by a...Ch. 12 - You work for a garden equipment company, and youre...Ch. 12 - Figure 12.20 shows the fool and lower leg of a...Ch. 12 - A uniform 5.0-kg ladder is leaning against a...Ch. 12 - The boom in the crane of Fig. 12.21 is free to...Ch. 12 - A uniform board of length L and weight W is...Ch. 12 - Figure 12.23 shows a 1250-kg car that has slipped...Ch. 12 - Repeat Example 12.2, now assuming that the...Ch. 12 - You are headwaiter at a new restaurant, and your...Ch. 12 - Climbers attempting to cross a stream place a...Ch. 12 - A crane in a marble quarry is mounted on the...Ch. 12 - A rectangular block measures w w L, where L is...Ch. 12 - The potential energy as a function of position for...Ch. 12 - A rectangular block of mass m measures w w L,...Ch. 12 - A 160-kg highway sign of uniform density is 2.3 m...Ch. 12 - A 5.0-m-long ladder has mass 9.5 kg and is leaning...Ch. 12 - Prob. 42PCh. 12 - A uniform, solid cube of mass m and side s is in...Ch. 12 - An isosceles triangular block of mass m and height...Ch. 12 - Youre investigating ladder safety for the Consumer...Ch. 12 - A 2.0-m-long rod has density in kilograms per...Ch. 12 - What horizontal force applied at its highest point...Ch. 12 - A rectangular block twice as high as it is wide is...Ch. 12 - What condition on the coefficient of friction in...Ch. 12 - A uniform solid cone of height h and base diameter...Ch. 12 - Prove the statement in Section 12.1 that the...Ch. 12 - Three identical books of length L are stacked over...Ch. 12 - A uniform pole of mass M is at rest on an incline...Ch. 12 - For what angle does the situation in Problem 53...Ch. 12 - Figure 12.31 shows a popular system for mounting...Ch. 12 - The nuchal ligament is a thick, cordlike structure...Ch. 12 - A 4.2-kg plant hangs from the bracket shown in...Ch. 12 - The wheel in Fig. 12.34 has mass M and is weighted...Ch. 12 - An interstellar spacecraft from an advanced...Ch. 12 - Youre called to testify in a product liability...Ch. 12 - Youre designing a vacation cabin at a ski resort....Ch. 12 - Prob. 62PCh. 12 - Engineers designing a new semiconductor device...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
Choose the best answer to each of the following. Explain your reasoning. Acceptance of Einsteins theory of grav...
Cosmic Perspective Fundamentals
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
66. Astronauts use a centrifuge to simulate the acceleration of a rocket launch. The centrifuge takes 30 s to...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In testing an automobile tire for proper alignment, a technicianmarks a spot on the tire 0.200 m from the center. He then mountsthe tire in a vertical plane and notes that the radius vector to thespot is at an angle of 35.0 with the horizontal. Starting from rest,the tire is spun rapidly with a constant angular acceleration of 3.00 rad/s2. a. What is the angular speed of the wheel after 4.00 s? b. What is the tangential speed of the spot after 4.00 s? c. What is the magnitude of the total accleration of the spot after 4.00 s?" d. What is the angular position of the spot after 4.00 s?arrow_forwardWhat is (a) the angular speed and (b) the linear speed of a point on Earth’s surface at latitude 30N . Take the radius of the Earth to be 6309 km. (c) At what latitude would your linear speed be 10 m/s?arrow_forwardA wheel 2.00 m in diameter lies in a vertical plane and rotates about its central axis with a constant angular acceleration of 4.00 rad/s2. The wheel starts at rest at t = 0, and the radius vector of a certain point P on the rim makes an angle of 57.3 with the horizontal at this time. At t = 2.00 s, find (a) the angular speed of the wheel and, for point P, (b) the tangential speed, (c) the total acceleration, and (d) the angular position.arrow_forward
- Find the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardWhy is the following situation impossible? A space station shaped like a giant wheel has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g (Fig. P10.52). A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a test to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening.arrow_forwardWhy is the following situation impossible? A space station shaped like a giant wheel (Fig. P11.28, page 306) has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g. A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a lest to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening. Figure P11.28arrow_forward
- A space station is constructed in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (See Fig. P10.52.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring. (a) What angular momentum does the space station acquire? (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N? Figure P10.52 Problems 52 and 54.arrow_forwardA particle of mass m moves along a straight line with constant velocity v0 in the x direction, a distance b from the x axis (Fig. P13.10). (a) Does the particle possess any angular momentum about the origin? (b) Explain why the amount of its angular momentum should change or should stay constant. (c) Show that Keplers second law is satisfied by showing that the two shaded triangles in the figure have the same area when . Figure P13.10arrow_forwardA compact disk, which has a diameter of 12.0 cm, speeds up uniformly from zero to 4.00 rev/s in 3.20 s. (a) What is the tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed is 2.00 rev/s? (b) What is the tangential acceleration of a point on the outer rim of the disk at the moment when its angular speed is 3.00 rev/s?arrow_forward
- Consider an "L-shaped rod” of uniform mass density, hinged at point 'O' is held at rest initially.The mass of the rod is 'm = 1 kg'. The earth's gravitational field is assumed to be uniform and directed downwards. Assume no friction at hinges.The rod is now released. Find the maximum magnitude of angular speed of the rod (in rad/s). (Take: L=1m, √10 =19÷6)arrow_forwardNeutron stars are extremely dense objects that are formed from the remnants of supernova explosions. Many rotate very rapidly. Suppose the mass of a certain spherical neutron star is twice the mass of the Sun and its radius is 6.00 km. Determine the greatest possible angular speed the neutron star can have so that the matter at its surface on the equator is just held in orbit by the gravitational force. (The mass of the Sun is 1.99 1030 kg.)arrow_forwardA 1.7 kg particle moves in a circle of radius 3.7 m. As you look down on the plane of its orbit, the particle is initially moving clockwise. If we call the clockwise direction positive, the particle's angular momentum relative to the center of the circle varies with time according to L(t) = 10 N · m·s - (8.0 N · m)t. (a) Find the magnitude and direction of the torque acting on the particle.(b) Find the angular velocity of the particle as a function of time in the form ω(t) = A + Bt.A = B =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY