Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 44P
An isosceles triangular block of mass m and height h is in stable equilibrium, resting on its base on a horizontal surface.
How much energy does it take to bring it to unstable equilibrium, resting on its apex?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniform ladder of mass 20 kg and length 13 m is resting, with its base on rough horizontal ground at a distance of 5 m from a rough vertical wall. The upper end of the ladder rests against the wall. The ground and the wall have the same coefficient of friction with the ladder.
a. Show that if the ladder is stable, then the coefficient of friction satisfies the inequality
μ> 0.2 [Sufficient working must be shown if full marks are to be awarded here.]
b. If, in fact,
μ= 0.36
A plank of wood (of length L meters) is balanced on a fulcrum that is situated directly underneath the middle of the plank. On the far-left end of
the plank is a vertical spring (that has a spring constant of 1000 N/m) that has one end attached to the ground, and the other end is attached to
the bottom of the plank. A block of mass 5 kg is placed on top of the far-right side of the plank. Assume the plank-system is in equilibrium. How
much is the spring stretched by after the block has been placed on the right-side of the plank?
O 0.196 m
O 0.147 m
O 0.049 m
0.098 m
Please asap
Chapter 12 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 12.1 - The figure shows three pairs of forces acting on...Ch. 12.2 - Prob. 12.2GICh. 12.3 - The figure shows a person in static equilibrium...Ch. 12.4 - Prob. 12.4GICh. 12 - Give an example of an object on which the net...Ch. 12 - Give an example of an object on which the net...Ch. 12 - Prob. 3FTDCh. 12 - Pregnant women often assume a posture with their...Ch. 12 - When you carry a bucket of water with one hand,...Ch. 12 - Is a ladder more likely to slip when you stand...
Ch. 12 - How does a heavy keel help keep a boat from...Ch. 12 - Does choosing a pivot point in an equilibrium...Ch. 12 - If you take the pivot point at the application...Ch. 12 - A short dog and a tall person are standing on a...Ch. 12 - Prob. 11FTDCh. 12 - A body is subject to three forces; F1=1i+2jN,...Ch. 12 - To demonstrate that the choice of pivot point...Ch. 12 - In Fig. 12.11 the forces shown all have the same...Ch. 12 - Figure 12.12a shows a thin, uniform square plate...Ch. 12 - Repeat the preceding problem for the equilateral...Ch. 12 - A 23-m-long log of irregular cross section lies...Ch. 12 - A 60-kg uniform board 2.4 m long is supported by a...Ch. 12 - Where should the child in Fig. 12.14 sit if the...Ch. 12 - A 4.2-m-long beam is supported by a cable at its...Ch. 12 - Figure 12.15 shows how a scale with a capacity of...Ch. 12 - A portion of a roller-coaster track is described...Ch. 12 - Prob. 23ECh. 12 - Youre a highway safety engineer, and youre asked...Ch. 12 - Figure 12.17a shows an outstretched arm with mass...Ch. 12 - A uniform sphere of radius R is supported by a...Ch. 12 - You work for a garden equipment company, and youre...Ch. 12 - Figure 12.20 shows the fool and lower leg of a...Ch. 12 - A uniform 5.0-kg ladder is leaning against a...Ch. 12 - The boom in the crane of Fig. 12.21 is free to...Ch. 12 - A uniform board of length L and weight W is...Ch. 12 - Figure 12.23 shows a 1250-kg car that has slipped...Ch. 12 - Repeat Example 12.2, now assuming that the...Ch. 12 - You are headwaiter at a new restaurant, and your...Ch. 12 - Climbers attempting to cross a stream place a...Ch. 12 - A crane in a marble quarry is mounted on the...Ch. 12 - A rectangular block measures w w L, where L is...Ch. 12 - The potential energy as a function of position for...Ch. 12 - A rectangular block of mass m measures w w L,...Ch. 12 - A 160-kg highway sign of uniform density is 2.3 m...Ch. 12 - A 5.0-m-long ladder has mass 9.5 kg and is leaning...Ch. 12 - Prob. 42PCh. 12 - A uniform, solid cube of mass m and side s is in...Ch. 12 - An isosceles triangular block of mass m and height...Ch. 12 - Youre investigating ladder safety for the Consumer...Ch. 12 - A 2.0-m-long rod has density in kilograms per...Ch. 12 - What horizontal force applied at its highest point...Ch. 12 - A rectangular block twice as high as it is wide is...Ch. 12 - What condition on the coefficient of friction in...Ch. 12 - A uniform solid cone of height h and base diameter...Ch. 12 - Prove the statement in Section 12.1 that the...Ch. 12 - Three identical books of length L are stacked over...Ch. 12 - A uniform pole of mass M is at rest on an incline...Ch. 12 - For what angle does the situation in Problem 53...Ch. 12 - Figure 12.31 shows a popular system for mounting...Ch. 12 - The nuchal ligament is a thick, cordlike structure...Ch. 12 - A 4.2-kg plant hangs from the bracket shown in...Ch. 12 - The wheel in Fig. 12.34 has mass M and is weighted...Ch. 12 - An interstellar spacecraft from an advanced...Ch. 12 - Youre called to testify in a product liability...Ch. 12 - Youre designing a vacation cabin at a ski resort....Ch. 12 - Prob. 62PCh. 12 - Engineers designing a new semiconductor device...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...
Additional Science Textbook Solutions
Find more solutions based on key concepts
For Questions 3 through 1 0, give a specific example of a system with the energy transformation shown. In these...
College Physics: A Strategic Approach (3rd Edition)
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
What dipeptides would be formed by heating a mixture of valine and N-protected leucine?
Organic Chemistry (8th Edition)
What type of cut would separate the brain into anterior and posterior parts?
Anatomy & Physiology (6th Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure shows a rigid assembly of a thin hoop (of mass m = 0.30 kg and radius R = 0.17 m) and a thin radial rod (of length L = 2R and also of mass m = 0.30 kg). The assembly is upright, but we nudge it so that it rotates around a horizontal axis in the plane of the rod and %3D %3D hoop, through the lower end of the rod. Assuming that the energy given to the assembly in the nudge is negligible, what is the assembly's angular speed about the rotation axis when it passes through the upside-down (inverted) orientation? Hoop Rod Rotation axis Number 9.23 Units rad/sarrow_forwarda rigid assembly of a thin hoop (of mass mand radius R = 0.150 m) and a thin radial rod (of mass m and length L = 2.00R). The assembly is upright, but if we give it a slight nudge, it will rotate around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that the energy given to the assembly in such a nudge is negligible, what would be the assembly’s angular speed about the rotation axis when it passes through the upside-down (inverted) orientation?arrow_forwardA 40-kg door with a height of 2.0 m and a width of 0.80 m is hinged at the end of the door along its vertical height. What is the kinetic energy of the door if it swings at 6.3 rad/s about a vertical axis that passes through the hinge of the door?arrow_forward
- Solve it?arrow_forwardWe can model a pine tree in the forest as having a compact canopy at the top of a relatively bare trunk. Wind blowing on the top of the tree exerts a horizontal force, and thus a torque that can topple the tree if there is no opposing torque. Suppose a tree’s canopy presents an area of 9.0 m2 to the wind centered at a height of 7.0 m above the ground. (These are reasonable values for forest trees.) If the wind blows at 6.5 m/s: a. What is the magnitude of the drag force of the wind on the canopy? Assume a drag coefficient of 0.50.b. What torque does this force exert on the tree, measured about the point where the trunk meets the ground?arrow_forwardA ladder of length L and mass M is leaning against a wall. Assuming thewall and the floor are friction-less, the ladder will slide down the wall and along the floor until the left end loses contact with the wall. Before the ladder loses contact with the wall there is one degree of freedom (θ). Express the kinetic energy in terms of θ and ̇θ.arrow_forward
- When using a ladder, it is important to place it against a wall at a safe angle. A ladder could tip over backwards if the angle is too large or the ladder could slide down the wall if the angle is too small. For a ladder to be placed at a safe angle, the ratio of the working length (how far you climb the ladder) to how far the ladder is from the wall should be 4 : 1. What angle should we place place our ladders at so that they are safe when we use them?arrow_forwardAnswer the following question?arrow_forwardProblems 7.42 and 7.43 The driveway gate is hinged at its right end and can swing freely in the horizontal plane The gate is pushed open by the force P that always acts perpendicular to the plane of the gate at point A. which is a horizontal distance d from the gate hinge. The weight of the gate is W = 215 lb, and its mass center is at G, which is a distance w/2 from each end of the gate, where w = 16 ft. Assume that the gate is initially at rest, and model the gate as a uniform thin bar as shown below the photo. hinge line /2 Problem 7.42i Given that a force of P gate (i.e., d = w/2), determine the reactions at the hinge O after the force P has heen continuously applied for 2 s. 20 lb is applied at the center of mass of the Problem 7.43 Given that aarrow_forward
- a small 0.171 kg block slides down a frictionless surface through height h = 0.893 m and then sticks to a uniform vertical rod of mass M = 0.342 kg and length d = 2.12 m. The rod pivots about point O through angle θ before momentarily stopping. Find θ.arrow_forwardA meter stick is held at one end by a frictionless pivot and is held horizontally at the other end. Neglecting air resistance, how far will the meter stick swing when released? O It will swing just short of horizontal on the other side of the pivot. O It will swing in a circle around the pivot and back to the starting point. O It will swing to horizontal on the other side of the pivot. O It will swing just beyond horizontal on the other side of the pivot. O It will drop to vertical and stop.arrow_forwardThe figure shows a rigid assembly of a thin hoop (of mass m = 0.24 kg and radius R = 0.16 m) and a thin radial rod (of length L = 2R and also of mass m = 0.24 kg). The assembly is upright, but we nudge it so that it rotates around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that the energy given to the assembly the nudge is negligible, what is the assembly's angular speed about the rotation axis when it passes through the upside-down (inverted) orientation? Number i Rod Hoop ! Rotation axis Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY