a.
To graph: A circular graph of diameter 2 in. with the given data.
a.
Explanation of Solution
Given information: Diameter of the
Theme | Percent |
An Evening of Stars | 11 |
Mardi Gras | 32 |
Springtime in Paris | 8 |
Night in Times Square | 47 |
Undecided | 2 |
Calculation: For the graph
So, angle of the sector of,
An Evening of Stars
Mardi Gras
Springtime in Paris
Night in Times Square
Undecided
Graph:
b.
To calculate: Area of each theme’s sector of the graph.
b.
Answer to Problem 26PPS
The area of the sector of An Evening of Stars is 0.34 in2, Mardi Gras is 1.00 in2, Springtime in Paris is 0.25 in2, Night in Times Square is 1.47 in2 and Undecided is 0.06 in2.
Explanation of Solution
Given information: Diameter of the circle is 2 in. and the table of the results of a survey of students is as follows,
Theme | Percent |
An Evening of Stars | 11 |
Mardi Gras | 32 |
Springtime in Paris | 8 |
Night in Times Square | 47 |
Undecided | 2 |
Formula used: Area of sector
Calculation:
Here,
Area of the sector of,
An Evening of Stars
Mardi Gras
Springtime in Paris
Night in Times Square
Undecided
Hence, the area of the sector of An Evening of Stars is 0.34 in2, Mardi Gras is 1.00 in2, Springtime in Paris is 0.25 in2, Night in Times Square is 1.47 in2 and Undecided is 0.06 in2.
Chapter 11 Solutions
Geometry, Student Edition
Additional Math Textbook Solutions
Thinking Mathematically (6th Edition)
Elementary Statistics (13th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Basic Business Statistics, Student Value Edition
Pre-Algebra Student Edition
- Classwork for Geometry 1st X S Savvas Realize * MARYIA DASHUTSINA-Ba → CA savvasrealize.com/dashboard/classes/49ec9fc00d8f48ec9a4b05b30c9ee0ba A > SIS © = =Wauconda Middle S... 31 WMS 8th Grade Tea... SIS Grades and Attenda.... esc GEOMETRY 1ST < Study Guide T6 K 18 L 63° 9 N M Quadrilateral JKLM is a parallelogram. What is the m ZKJN? mZKJN = Review Progress acerarrow_forwardWhy is this proof incorrect? State what statement and/or reason is incorrect and why. Given: Overline OR is congruent to overline OQ, angle N is congruent to angle PProve: Angle 3 is congruent to angle 5 Why is this proof incorrect? Statements Reasons 1. Overline OR is congruent to overline OQ, angle N is congruent to angle P 1. Given 2. Overline ON is congruent to overline OP 2. Converse of the Isosceles Triangle Theorem 3. Triangle ONR is congruent to triangle OPQ 3. SAS 4. Angle 3 is congruent to angle 5 4. CPCTCarrow_forwardGiven: AABE ~ ACDE. Prove: AC bisects BD. Note: quadrilateral properties are not permitted in this proof. Step Statement Reason AABE ACDE Given 2 ZDEC ZAEB Vertical angles are congruent try Type of Statement A E B D Carrow_forward
- 2) Based on the given information and the diagram, a. Which congruence statements can be proven? Select all that apply.Given: Overline OR is congruent to overline OQ, angle N is congruent to angle PProve: angle 3 is congruent to angle 5A. Overline ON is congruent to overline OPB. Angle 1 is congruent to angle 2C. Overline ON is congruent to overline OR and overline OP is congruent to overine OQD. angle 1 is congruent to angle 3 and angle 2 is congruent to angle 5There are more than one correct answerarrow_forwardnt/Ray Skew Lines/ J K # H L 艹 G C D E F Diagrams m Three Points th a Protractor Answer Attempt 3 out of 3 el 1 is congruent to Submit Answer 103 Log Out REE Young the → C # $arrow_forward4:54 PM Thu Jan 16 cdn.assess.prod.mheducation.com Question 3 The angle bisectors of APQR are PZ, QZ, and RZ. They meet at a single point Z. (In other words, Z is the incenter of APQR.) Suppose YZ = 22, QZ = 23, mz WPY 38°, and mzXQZ = 54°. Find the following measures. Note that the figure is not drawn to scale. P W Z X R Y mzXQW WZ = = 0 mz XRZ = 0°arrow_forward
- Ja дх dx dx Q3: Define the linear functional J: H()-R by تاریخ (v) = ½a(v, v) - (v) == Let u be the unique weak solution to a(u,v) = L(v) in H₁(2) and suppose that a(...) is a symmetric bilinear form on H() prove that a Buy v) = 1- u is minimizer. 2- u is unique. 3- The minimizer J(u,) can be rewritten under J(u)=u' Au-ub, algebraic form Where A, b are repictively the stiffence matrix and the load vector Q4: A) Answer only 1-show that thelation to -Auf in N, u = 0 on a satisfies the stability Vulf and show that V(u-u,)||² = ||vu||2 - ||vu||2 lu-ulls Chu||2 2- Prove that Where =1 ||ul|= a(u, u) = Vu. Vu dx + fu. uds B) Consider the bilinear form a(u, v) = (Au, Av) + (Vu, Vv) + (Vu, v) + (u, v) Show that a(u, v) continues and V- elliptic on H(2) (3) (0.0), (3.0)arrow_forwardQ1: A) fill the following: 1- The number of triangular in a triangular region with 5 nodes is quadrilateral with n=5 and m=6 nodés is 2- The complex shape function in 1-D 3- dim(P4(K))=- (7M --- and in the and multiplex shape function in 2-D is 4- The trial space and test space for problem -Auf, u = go on and B) Define the energy norm and prove that the solution u, defined by Galerkin orthogonal satisfies the best approximation. Q2: A) Find the varitional form for the problem 1330 (b(x)) - x²=0, 0arrow_forwardcould you help?arrow_forward(ii)arrow_forwardA convex polygon is said to be regular if all of its sides have the same length and all angles between sides are the same. Let Pr denote the regular convex n-sided polygon. Thus, P3 is the equilateral triangle, P₁ is the square, P is the pentagon etc. Compute a formula for the size of any internal angle of Pn.arrow_forward+ Recall that a map, f: R2 R², is an isometry if |P-Q| = |ƒ(P) — ƒ (Q) for all pairs of points P and Q in R². Thus, f is a distance preserving map. Show that an isometry, f: R² → R² also preserves angles. In other words if two line segments meeting at a point determine an angle a, their image line segments meeting at the image of that point also determine the angle a.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning