McDougal Littell Jurgensen Geometry: Student Edition Geometry
5th Edition
ISBN: 9780395977279
Author: Ray C. Jurgensen, Richard G. Brown, John W. Jurgensen
Publisher: Houghton Mifflin Company College Division
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.3, Problem 11WE
To determine
To Find: The area of trapezoid.
Expert Solution & Answer
Answer to Problem 11WE
Explanation of Solution
Given:
Using Pythagoras theorem in
Here
Area of Trapezoid.
Hence, area of the trapezoid is
Chapter 11 Solutions
McDougal Littell Jurgensen Geometry: Student Edition Geometry
Ch. 11.1 - Prob. 1CECh. 11.1 - Prob. 2CECh. 11.1 - Prob. 3CECh. 11.1 - Prob. 4CECh. 11.1 - Prob. 5CECh. 11.1 - Prob. 6CECh. 11.1 - Prob. 7CECh. 11.1 - Prob. 8CECh. 11.1 - Prob. 9CECh. 11.1 - Prob. 10CE
Ch. 11.1 - Prob. 11CECh. 11.1 - Prob. 12CECh. 11.1 - Prob. 13CECh. 11.1 - Prob. 14CECh. 11.1 - Prob. 15CECh. 11.1 - Prob. 1WECh. 11.1 - Prob. 2WECh. 11.1 - Prob. 3WECh. 11.1 - Prob. 4WECh. 11.1 - Prob. 5WECh. 11.1 - Prob. 6WECh. 11.1 - Prob. 7WECh. 11.1 - Prob. 8WECh. 11.1 - Prob. 9WECh. 11.1 - Prob. 10WECh. 11.1 - Prob. 11WECh. 11.1 - Prob. 12WECh. 11.1 - Prob. 13WECh. 11.1 - Prob. 14WECh. 11.1 - Prob. 15WECh. 11.1 - Prob. 16WECh. 11.1 - Prob. 17WECh. 11.1 - Prob. 18WECh. 11.1 - Prob. 19WECh. 11.1 - Prob. 20WECh. 11.1 - Prob. 21WECh. 11.1 - Prob. 22WECh. 11.1 - Prob. 23WECh. 11.1 - Prob. 24WECh. 11.1 - Prob. 25WECh. 11.1 - Prob. 26WECh. 11.1 - Prob. 27WECh. 11.1 - Prob. 28WECh. 11.1 - Prob. 29WECh. 11.1 - Prob. 30WECh. 11.1 - Prob. 31WECh. 11.1 - Prob. 32WECh. 11.1 - Prob. 33WECh. 11.1 - Prob. 34WECh. 11.1 - Prob. 35WECh. 11.1 - Prob. 36WECh. 11.1 - Prob. 37WECh. 11.1 - Prob. 1ECh. 11.1 - Prob. 2ECh. 11.1 - Prob. 3ECh. 11.2 - Prob. 1CECh. 11.2 - Prob. 2CECh. 11.2 - Prob. 3CECh. 11.2 - Prob. 4CECh. 11.2 - Prob. 5CECh. 11.2 - Prob. 6CECh. 11.2 - Prob. 7CECh. 11.2 - Prob. 8CECh. 11.2 - Prob. 9CECh. 11.2 - Prob. 1WECh. 11.2 - Prob. 2WECh. 11.2 - Prob. 3WECh. 11.2 - Prob. 4WECh. 11.2 - Prob. 5WECh. 11.2 - Prob. 6WECh. 11.2 - Prob. 7WECh. 11.2 - Prob. 8WECh. 11.2 - Prob. 9WECh. 11.2 - Prob. 10WECh. 11.2 - Prob. 11WECh. 11.2 - Prob. 12WECh. 11.2 - Prob. 13WECh. 11.2 - Prob. 14WECh. 11.2 - Prob. 15WECh. 11.2 - Prob. 16WECh. 11.2 - Prob. 17WECh. 11.2 - Prob. 18WECh. 11.2 - Prob. 19WECh. 11.2 - Prob. 20WECh. 11.2 - Prob. 21WECh. 11.2 - Prob. 22WECh. 11.2 - Prob. 23WECh. 11.2 - Prob. 24WECh. 11.2 - Prob. 25WECh. 11.2 - Prob. 26WECh. 11.2 - Prob. 27WECh. 11.2 - Prob. 28WECh. 11.2 - Prob. 29WECh. 11.2 - Prob. 30WECh. 11.2 - Prob. 31WECh. 11.2 - Prob. 32WECh. 11.2 - Prob. 33WECh. 11.2 - Prob. 34WECh. 11.2 - Prob. 35WECh. 11.2 - Prob. 36WECh. 11.2 - Prob. 37WECh. 11.2 - Prob. 38WECh. 11.2 - Prob. 39WECh. 11.2 - Prob. 40WECh. 11.2 - Prob. 41WECh. 11.2 - Prob. 42WECh. 11.2 - Prob. 1ECh. 11.2 - Prob. 2ECh. 11.2 - Prob. 3ECh. 11.2 - Prob. 4ECh. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Prob. 9ECh. 11.2 - Prob. 10ECh. 11.2 - Prob. 11ECh. 11.2 - Prob. 12ECh. 11.2 - Prob. 13ECh. 11.2 - Prob. 14ECh. 11.3 - Prob. 1CECh. 11.3 - Prob. 2CECh. 11.3 - Prob. 3CECh. 11.3 - Prob. 4CECh. 11.3 - Prob. 5CECh. 11.3 - Prob. 6CECh. 11.3 - Prob. 7CECh. 11.3 - Prob. 8CECh. 11.3 - Prob. 9CECh. 11.3 - Prob. 10CECh. 11.3 - Prob. 1WECh. 11.3 - Prob. 2WECh. 11.3 - Prob. 3WECh. 11.3 - Prob. 4WECh. 11.3 - Prob. 5WECh. 11.3 - Prob. 6WECh. 11.3 - Prob. 7WECh. 11.3 - Prob. 8WECh. 11.3 - Prob. 9WECh. 11.3 - Prob. 10WECh. 11.3 - Prob. 11WECh. 11.3 - Prob. 12WECh. 11.3 - Prob. 13WECh. 11.3 - Prob. 14WECh. 11.3 - Prob. 15WECh. 11.3 - Prob. 16WECh. 11.3 - Prob. 17WECh. 11.3 - Prob. 18WECh. 11.3 - Prob. 19WECh. 11.3 - Prob. 20WECh. 11.3 - Prob. 21WECh. 11.3 - Prob. 22WECh. 11.3 - Prob. 23WECh. 11.3 - Prob. 24WECh. 11.3 - Prob. 25WECh. 11.3 - Prob. 26WECh. 11.3 - Prob. 27WECh. 11.3 - Prob. 28WECh. 11.3 - Prob. 29WECh. 11.3 - Prob. 30WECh. 11.3 - Prob. 31WECh. 11.3 - Prob. 32WECh. 11.3 - Prob. 33WECh. 11.3 - Prob. 34WECh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 1MRECh. 11.3 - Prob. 2MRECh. 11.3 - Prob. 3MRECh. 11.3 - Prob. 4MRECh. 11.3 - Prob. 5MRECh. 11.3 - Prob. 6MRECh. 11.3 - Prob. 7MRECh. 11.3 - Prob. 8MRECh. 11.4 - Prob. 1CECh. 11.4 - Prob. 2CECh. 11.4 - Prob. 3CECh. 11.4 - Prob. 4CECh. 11.4 - Prob. 5CECh. 11.4 - Prob. 6CECh. 11.4 - Prob. 7CECh. 11.4 - Prob. 8CECh. 11.4 - Prob. 9CECh. 11.4 - Prob. 1WECh. 11.4 - Prob. 2WECh. 11.4 - Prob. 3WECh. 11.4 - Prob. 4WECh. 11.4 - Prob. 5WECh. 11.4 - Prob. 6WECh. 11.4 - Prob. 7WECh. 11.4 - Prob. 8WECh. 11.4 - Prob. 9WECh. 11.4 - Prob. 10WECh. 11.4 - Prob. 11WECh. 11.4 - Prob. 12WECh. 11.4 - Prob. 13WECh. 11.4 - Prob. 14WECh. 11.4 - Prob. 15WECh. 11.4 - Prob. 16WECh. 11.4 - Prob. 17WECh. 11.4 - Prob. 18WECh. 11.4 - Prob. 19WECh. 11.4 - Prob. 20WECh. 11.4 - Prob. 21WECh. 11.4 - Prob. 22WECh. 11.4 - Prob. 1ST1Ch. 11.4 - Prob. 2ST1Ch. 11.4 - Prob. 3ST1Ch. 11.4 - Prob. 4ST1Ch. 11.4 - Prob. 5ST1Ch. 11.4 - Prob. 6ST1Ch. 11.4 - Prob. 7ST1Ch. 11.4 - Prob. 8ST1Ch. 11.4 - Prob. 9ST1Ch. 11.4 - Prob. 10ST1Ch. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.5 - Prob. 1CECh. 11.5 - Prob. 2CECh. 11.5 - Prob. 3CECh. 11.5 - Prob. 4CECh. 11.5 - Prob. 5CECh. 11.5 - Prob. 6CECh. 11.5 - Prob. 7CECh. 11.5 - Prob. 8CECh. 11.5 - Prob. 9CECh. 11.5 - Prob. 10CECh. 11.5 - Prob. 11CECh. 11.5 - Prob. 12CECh. 11.5 - Prob. 13CECh. 11.5 - Prob. 14CECh. 11.5 - Prob. 1WECh. 11.5 - Prob. 2WECh. 11.5 - Prob. 3WECh. 11.5 - Prob. 4WECh. 11.5 - Prob. 5WECh. 11.5 - Prob. 6WECh. 11.5 - Prob. 7WECh. 11.5 - Prob. 8WECh. 11.5 - Prob. 9WECh. 11.5 - Prob. 10WECh. 11.5 - Prob. 11WECh. 11.5 - Prob. 12WECh. 11.5 - Prob. 13WECh. 11.5 - Prob. 14WECh. 11.5 - Prob. 15WECh. 11.5 - Prob. 16WECh. 11.5 - Prob. 17WECh. 11.5 - Prob. 18WECh. 11.5 - Prob. 19WECh. 11.5 - Prob. 20WECh. 11.5 - Prob. 21WECh. 11.5 - Prob. 22WECh. 11.5 - Prob. 23WECh. 11.5 - Prob. 24WECh. 11.5 - Prob. 25WECh. 11.5 - Prob. 26WECh. 11.5 - Prob. 27WECh. 11.5 - Prob. 28WECh. 11.5 - Prob. 29WECh. 11.5 - Prob. 30WECh. 11.5 - Prob. 31WECh. 11.5 - Prob. 32WECh. 11.5 - Prob. 33WECh. 11.5 - Prob. 34WECh. 11.5 - Prob. 35WECh. 11.5 - Prob. 1ECh. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Prob. 1ARCh. 11.5 - Prob. 2ARCh. 11.5 - Prob. 3ARCh. 11.5 - Prob. 4ARCh. 11.5 - Prob. 5ARCh. 11.5 - Prob. 6ARCh. 11.5 - Prob. 7ARCh. 11.5 - Prob. 8ARCh. 11.6 - Prob. 1CECh. 11.6 - Prob. 2CECh. 11.6 - Prob. 3CECh. 11.6 - Prob. 4CECh. 11.6 - Prob. 5CECh. 11.6 - Prob. 6CECh. 11.6 - Prob. 7CECh. 11.6 - Prob. 1WECh. 11.6 - Prob. 2WECh. 11.6 - Prob. 3WECh. 11.6 - Prob. 4WECh. 11.6 - Prob. 5WECh. 11.6 - Prob. 6WECh. 11.6 - Prob. 7WECh. 11.6 - Prob. 8WECh. 11.6 - Prob. 9WECh. 11.6 - Prob. 10WECh. 11.6 - Prob. 11WECh. 11.6 - Prob. 12WECh. 11.6 - Prob. 13WECh. 11.6 - Prob. 14WECh. 11.6 - Prob. 15WECh. 11.6 - Prob. 16WECh. 11.6 - Prob. 17WECh. 11.6 - Prob. 18WECh. 11.6 - Prob. 19WECh. 11.6 - Prob. 20WECh. 11.6 - Prob. 21WECh. 11.6 - Prob. 22WECh. 11.6 - Prob. 23WECh. 11.6 - Prob. 24WECh. 11.6 - Prob. 25WECh. 11.6 - Prob. 26WECh. 11.6 - Prob. 27WECh. 11.6 - Prob. 28WECh. 11.6 - Prob. 29WECh. 11.6 - Prob. 30WECh. 11.7 - Prob. 1CECh. 11.7 - Prob. 2CECh. 11.7 - Prob. 3CECh. 11.7 - Prob. 4CECh. 11.7 - Prob. 5CECh. 11.7 - Prob. 6CECh. 11.7 - Prob. 7CECh. 11.7 - Prob. 8CECh. 11.7 - Prob. 9CECh. 11.7 - Prob. 10CECh. 11.7 - Prob. 11CECh. 11.7 - Prob. 12CECh. 11.7 - Prob. 13CECh. 11.7 - Prob. 14CECh. 11.7 - Prob. 15CECh. 11.7 - Prob. 1WECh. 11.7 - Prob. 2WECh. 11.7 - Prob. 3WECh. 11.7 - Prob. 4WECh. 11.7 - Prob. 5WECh. 11.7 - Prob. 6WECh. 11.7 - Prob. 7WECh. 11.7 - Prob. 8WECh. 11.7 - Prob. 9WECh. 11.7 - Prob. 10WECh. 11.7 - Prob. 11WECh. 11.7 - Prob. 12WECh. 11.7 - Prob. 13WECh. 11.7 - Prob. 14WECh. 11.7 - Prob. 15WECh. 11.7 - Prob. 16WECh. 11.7 - Prob. 17WECh. 11.7 - Prob. 18WECh. 11.7 - Prob. 19WECh. 11.7 - Prob. 20WECh. 11.7 - Prob. 21WECh. 11.7 - Prob. 22WECh. 11.7 - Prob. 23WECh. 11.7 - Prob. 24WECh. 11.7 - Prob. 25WECh. 11.7 - Prob. 26WECh. 11.7 - Prob. 27WECh. 11.7 - Prob. 28WECh. 11.7 - Prob. 29WECh. 11.7 - Prob. 30WECh. 11.7 - Prob. 31WECh. 11.7 - Prob. 32WECh. 11.8 - Prob. 1CECh. 11.8 - Prob. 2CECh. 11.8 - Prob. 3CECh. 11.8 - Prob. 4CECh. 11.8 - Prob. 1WECh. 11.8 - Prob. 2WECh. 11.8 - Prob. 3WECh. 11.8 - Prob. 4WECh. 11.8 - Prob. 5WECh. 11.8 - Prob. 6WECh. 11.8 - Prob. 7WECh. 11.8 - Prob. 8WECh. 11.8 - Prob. 9WECh. 11.8 - Prob. 10WECh. 11.8 - Prob. 11WECh. 11.8 - Prob. 12WECh. 11.8 - Prob. 13WECh. 11.8 - Prob. 14WECh. 11.8 - Prob. 15WECh. 11.8 - Prob. 16WECh. 11.8 - Prob. 17WECh. 11.8 - Prob. 1ST2Ch. 11.8 - Prob. 2ST2Ch. 11.8 - Prob. 3ST2Ch. 11.8 - Prob. 4ST2Ch. 11.8 - Prob. 5ST2Ch. 11.8 - Prob. 6ST2Ch. 11.8 - Prob. 7ST2Ch. 11.8 - Prob. 8ST2Ch. 11.8 - Prob. 9ST2Ch. 11.8 - Prob. 10ST2Ch. 11.8 - Prob. 1AECh. 11.8 - Prob. 2AECh. 11.8 - Prob. 3AECh. 11.8 - Prob. 4AECh. 11.8 - Prob. 5AECh. 11.8 - Prob. 6AECh. 11.8 - Prob. 7AECh. 11.8 - Prob. 8AECh. 11.8 - Prob. 1BECh. 11.8 - Prob. 2BECh. 11.8 - Prob. 3BECh. 11.8 - Prob. 4BECh. 11 - Prob. 1CRCh. 11 - Prob. 2CRCh. 11 - Prob. 3CRCh. 11 - Prob. 4CRCh. 11 - Prob. 5CRCh. 11 - Prob. 6CRCh. 11 - Prob. 7CRCh. 11 - Prob. 8CRCh. 11 - Prob. 9CRCh. 11 - Prob. 10CRCh. 11 - Prob. 11CRCh. 11 - Prob. 12CRCh. 11 - Prob. 13CRCh. 11 - Prob. 14CRCh. 11 - Prob. 15CRCh. 11 - Prob. 16CRCh. 11 - Prob. 17CRCh. 11 - Prob. 18CRCh. 11 - Prob. 19CRCh. 11 - Prob. 20CRCh. 11 - Prob. 21CRCh. 11 - Prob. 22CRCh. 11 - Prob. 23CRCh. 11 - Prob. 1CTCh. 11 - Prob. 2CTCh. 11 - Prob. 3CTCh. 11 - Prob. 4CTCh. 11 - Prob. 5CTCh. 11 - Prob. 6CTCh. 11 - Prob. 7CTCh. 11 - Prob. 8CTCh. 11 - Prob. 9CTCh. 11 - Prob. 10CTCh. 11 - Prob. 11CTCh. 11 - Prob. 12CTCh. 11 - Prob. 13CTCh. 11 - Prob. 14CTCh. 11 - Prob. 15CTCh. 11 - Prob. 16CTCh. 11 - Prob. 17CTCh. 11 - Prob. 18CTCh. 11 - Prob. 19CTCh. 11 - Prob. 20CTCh. 11 - Prob. 1CURCh. 11 - Prob. 2CURCh. 11 - Prob. 3CURCh. 11 - Prob. 4CURCh. 11 - Prob. 5CURCh. 11 - Prob. 6CURCh. 11 - Prob. 7CURCh. 11 - Prob. 8CURCh. 11 - Prob. 9CURCh. 11 - Prob. 10CURCh. 11 - Prob. 11CURCh. 11 - Prob. 12CURCh. 11 - Prob. 13CURCh. 11 - Prob. 14CURCh. 11 - Prob. 15CURCh. 11 - Prob. 16CURCh. 11 - Prob. 17CURCh. 11 - Prob. 18CURCh. 11 - Prob. 19CURCh. 11 - Prob. 20CURCh. 11 - Prob. 21CURCh. 11 - Prob. 22CURCh. 11 - Prob. 23CURCh. 11 - Prob. 24CURCh. 11 - Prob. 25CURCh. 11 - Prob. 26CURCh. 11 - Prob. 27CURCh. 11 - Prob. 28CURCh. 11 - Prob. 29CURCh. 11 - Prob. 30CURCh. 11 - Prob. 31CURCh. 11 - Prob. 32CURCh. 11 - Prob. 33CURCh. 11 - Prob. 34CURCh. 11 - Prob. 35CURCh. 11 - Prob. 36CURCh. 11 - Prob. 37CUR
Additional Math Textbook Solutions
Find more solutions based on key concepts
The table by using the given graph of h.
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
CHECK POINT I You deposit $3000 in s savings account at Yourtown Bank, which has rate of 5%. Find the interest ...
Thinking Mathematically (6th Edition)
Fill in each blank so that the resulting statement is true. An equation that expresses a relationship between t...
Algebra and Trigonometry (6th Edition)
Sum of the given expression
Pre-Algebra Student Edition
Surfing College students and surfers Rex Robinson and Sandy Hudson collected data on the self-reported numbers ...
Introductory Statistics
Find the additive inverse of each of the following integers. Write the answer in the simplest possible form. a....
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.Similar questions
- 3. Construct a triangle in the Poincare plane with all sides equal to ln(2). (Hint: Use the fact that, the circle with center (0,a) and radius ln(r), r>1 in the Poincaré plane is equal to the point set { (x,y) : x^2+(y-1/2(r+1/r)a)^2=1/4(r-1/r)^2a^2 }arrow_forwardn. g. = neutral geometry <ABC = angle ABC \leq = less or equal than sqrt{x} = square root of x cLr = the line in the Poincaré plane defined by the equation (x-c)^2+y^2=r^2 1. Find the bisector of the angle <ABC in the Poincaré plane, where A=(0,5), B=(0,3) and C=(2,\sqrt{21})arrow_forward2. Let l=2L\sqrt{5} and P=(1,2) in the Poincaré plane. Find the uniqe line l' through P such that l' is orthogonal to l.arrow_forward
- Let A, B and C be three points in neutral geometry, lying on a circle with center D. If D is in the interior of the triangle ABC, then show that m(<ABC) \leq 1/2m(<ADC).arrow_forwardиз Review the deck below and determine its total square footage (add its deck and backsplash square footage together to get the result). Type your answer in the entry box and click Submit. 126 1/2" 5" backsplash A 158" CL 79" B 26" Type your answer here.arrow_forwardIn the graph below triangle I'J'K' is the image of triangle UK after a dilation. 104Y 9 CO 8 7 6 5 I 4 3 2 J -10 -9 -8 -7 -6 -5 -4 -3 -21 1 2 3 4 5 6 7 8 9 10 2 K -3 -4 K' 5 -6 What is the center of dilation? (0.0) (-5. 2) (-8. 11 (9.-3) 6- 10arrow_forward
- Select all that apply. 104 8 6 4 2 U U' -10 -8 -6 4 -2 2 4 6 10 -2 V' W' -4 -6 -8 -10 W V Select 2 correct answerts! The side lengths are equal in measure. The scale factor is 1/5. The figure has been enlarged in size. The center of dilation is (0.0) 8 10 Xarrow_forwardIn the graph below triangle I'J'K' is the image of triangle UK after a dilation. 104Y 9 CO 8 7 6 5 I 4 3 2 J -10 -9 -8 -7 -6 -5 -4 -3 -21 1 2 3 4 5 6 7 8 9 10 2 K -3 -4 K' 5 -6 What is the center of dilation? (0.0) (-5. 2) (-8. 11 (9.-3) 6- 10arrow_forwardQll consider the problem -abu+bou+cu=f., u=0 ondor I prove atu, ul conts. @ if Blu,v) = (b. 14, U) + ((4,0) prove that B244) = ((c- — ob)4;4) ③if c±vbo prove that acuius v. elliptic.arrow_forward
- Q3: Define the linear functional J: H₁(2) R by ¡(v) = a(v, v) - L(v) Л Let u be the unique weak solution to a(u,v) = L(v) in H(2) and suppose that a(...) is a symmetric bilinear form on H(2) prove that 1- u is minimizer. 2- u is unique. 3- The minimizer J(u) can be rewritten under 1(u) = u Au-ub, algebraic form 1 2 Where A, b are repictively the stiffence matrix and the load vector Q4: A) Answer 1- show that the solution to -Au = f in A, u = 0 on a satisfies the stability Vullfll and show that ||V(u u)||||||2 - ||vu||2 2- Prove that Where lu-ul Chuz - !ull = a(u, u) = Vu. Vu dx + fu. uds B) Consider the bilinea forta Л a(u, v) = (Au, Av) (Vu, Vv + (Vu, v) + (u,v) Show that a(u, v) continues and V- elliptic on H(2)arrow_forward7) In the diagram below of quadrilateral ABCD, E and F are points on AB and CD respectively, BE=DF, and AE = CF. Which conclusion can be proven? A 1) ED = FB 2) AB CD 3) ZA = ZC 4) ZAED/CFB E B D 0arrow_forward1) In parallelogram EFGH, diagonals EG and FH intersect at point I such that EI = 2x - 2 and EG = 3x + 11. Which of the following is the length of GH? a) 15 b) 28 c) 32 d) 56arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Elementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
An Introduction to Area | Teaching Maths | EasyTeaching; Author: EasyTeaching;https://www.youtube.com/watch?v=_uKKl8R1xBM;License: Standard YouTube License, CC-BY
Area of a Rectangle, Triangle, Circle & Sector, Trapezoid, Square, Parallelogram, Rhombus, Geometry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=JnLDmw3bbuw;License: Standard YouTube License, CC-BY