THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.11, Problem 59P
Reconsider Prob. 1–58. Using appropriate software, investigate the effect of the spring force in the range of 0 to 500 N on the pressure inside the cylinder. Plot the pressure against the spring force, and discuss the results.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A frictionless piston-cylinder device contains 100 kg
of saturated liquid refrigerant-134a. If the piston's
mass exerts a pressure of 600 kPa on the refrigerant,
the volume (liters) of refrigerant-134a in the piston is
Select one:
0.819
81.99
0.167
167
A glass tube is attached to a water pipe, as shown in Fig. P1–107. If the water pressure at the bottom of the tube is 107 kPa and the local atmospheric pressure is 99 kPa, determine how high the water will rise in the tube, in m. Take the density of water to be 1000 kg/m3.
Calculate the absolute pressure, P1, of the manometer shown in Fig. P1–73 in kPa. The local atmospheric pressure is 758 mmHg.
Chapter 1 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - One of the most amusing things a person can...Ch. 1.11 - An office worker claims that a cup of cold coffee...Ch. 1.11 - What is the difference between the classical and...Ch. 1.11 - Explain why the light-year has the dimension of...Ch. 1.11 - What is the difference between pound-mass and...Ch. 1.11 - What is the net force acting on a car cruising at...Ch. 1.11 - What is the weight, in N, of an object with a mass...Ch. 1.11 - If the mass of an object is 10 lbm, what is its...Ch. 1.11 - The acceleration of high-speed aircraft is...
Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - A 3-kg plastic tank that has a volume of 0.2 m3 is...Ch. 1.11 - A 2-kg rock is thrown upward with a force of 200 N...Ch. 1.11 - Solve Prob. 113 using appropriate software. Print...Ch. 1.11 - A 4-kW resistance heater in a water heater runs...Ch. 1.11 - A 150-lbm astronaut took his bathroom scale (a...Ch. 1.11 - The gas tank of a car is filled with a nozzle that...Ch. 1.11 - How would you define a system to determine the...Ch. 1.11 - A large fraction of the thermal energy generated...Ch. 1.11 - A can of soft drink at room temperature is put...Ch. 1.11 - How would you define a system to determine the...Ch. 1.11 - How would you describe the state of the air in the...Ch. 1.11 - What is the difference between intensive and...Ch. 1.11 - The specific weight of a system is defined as the...Ch. 1.11 - Is the number of moles of a substance contained in...Ch. 1.11 - Is the state of the air in an isolated room...Ch. 1.11 - What is a quasi-equilibrium process? What is its...Ch. 1.11 - Define the isothermal, isobaric, and isochoric...Ch. 1.11 - What is specific gravity? How is it related to...Ch. 1.11 - What are the ordinary and absolute temperature...Ch. 1.11 - Consider an alcohol and a mercury thermometer that...Ch. 1.11 - Consider two dosed systems A and B. System A...Ch. 1.11 - Consider a system whose temperature is 18C....Ch. 1.11 - Steam enters a heat exchanger at 300 K. What is...Ch. 1.11 - The temperature of a system rises by 130C during a...Ch. 1.11 - The temperature of a system drops by 45F during a...Ch. 1.11 - The temperature of the lubricating oil in an...Ch. 1.11 - Heated air is at 150C. What is the temperature of...Ch. 1.11 - What is the difference between gage pressure and...Ch. 1.11 - Explain why some people experience nose bleeding...Ch. 1.11 - A health magazine reported that physicians...Ch. 1.11 - Someone claims that the absolute pressure in a...Ch. 1.11 - Consider two identical fans, one at sea level and...Ch. 1.11 - The absolute pressure in a compressed air tank is...Ch. 1.11 - A manometer measures a pressure difference as 40...Ch. 1.11 - A vacuum gage connected to a chambee reads 35 kPa...Ch. 1.11 - The maximum safe air pressure of a tire is...Ch. 1.11 - A pressure gage connected to a tank reads 50 psi...Ch. 1.11 - A pressure gage connected to a tank reads 500 kPa...Ch. 1.11 - A 200-pound man has a total foot imprint area of...Ch. 1.11 - The gage pressure in a liquid at a depth of 3 m is...Ch. 1.11 - The absolute pressure in water at a depth of 9 m...Ch. 1.11 - Consider a 1.75-m-tall man standing vertically in...Ch. 1.11 - The barometer of a mountain hiker reads 750 mbars...Ch. 1.11 - The basic barometer can be used to measure the...Ch. 1.11 - A gas is contained in a vertical, frictionless...Ch. 1.11 - Reconsider Prob. 158. Using appropriate software,...Ch. 1.11 - The piston of a vertical piston-cylinder device...Ch. 1.11 - Both a gage and a manometer are attached to a gas...Ch. 1.11 - Reconsider Prob. 161. Using appropriate software,...Ch. 1.11 - A manometer containing oil ( = 850 kg/m3) is...Ch. 1.11 - A manometer is used to measure the air pressure in...Ch. 1.11 - A mercury manometer ( = 13.600 kg/m3) is connected...Ch. 1.11 - Repeat Prob. 165 for a differential mercury height...Ch. 1.11 - The pressure in a natural gas pipeline is measured...Ch. 1.11 - Repeat Prob. 167E by replacing air with oil with a...Ch. 1.11 - Blood pressure is usually measure by wrapping a...Ch. 1.11 - The maximum blood pressure in the upper arm of a...Ch. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Consider a double-fluid manometer attached to an...Ch. 1.11 - Calculate the absolute pressure. P1, of the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - The hydraulic lift in a car repair shop has an...Ch. 1.11 - Consider the system shown in Fig. 177. If a change...Ch. 1.11 - The gage pressure of the air in the tank shown in...Ch. 1.11 - Repeat Prob. 178 for a gage pressure of 40 kPa.Ch. 1.11 - What is the value of the engineering software...Ch. 1.11 - Determine a positive real root of this equation...Ch. 1.11 - Solve this system of two equations with two...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - A man goes to a traditional market to buy a steak...Ch. 1.11 - What is the weight of a 1-kg substance in N, kN,...Ch. 1.11 - The pressure in a steam boiler is given to be 92...Ch. 1.11 - A hydraulic lift is to be used to lift a 1900-kg...Ch. 1.11 - The average atmosphere pressure on earth is...Ch. 1.11 - Hyperthermia of 5C (i.e., 5C rise above the normal...Ch. 1.11 - The boiling temperature of water decreases by...Ch. 1.11 - A house is losing heat at a rate of 1800 kJ/h per...Ch. 1.11 - The average body temperature of a person rises by...Ch. 1.11 - The average temperature of the atmosphere in the...Ch. 1.11 - A vertical, frictionless pistoncylinder device...Ch. 1.11 - A vertical pistoncylinder device contains a gas at...Ch. 1.11 - The force generated by a spring is given by F =...Ch. 1.11 - An air-conditioning system requires a 35-m-long...Ch. 1.11 - Balloons are often filled with helium gas because...Ch. 1.11 - Reconsider Prob. 1101. Using appropriate software,...Ch. 1.11 - Determine the maximum amount of load, in kg, the...Ch. 1.11 - The lower half of a 6-m-high cylindrical container...Ch. 1.11 - A pressure cooker cooks a lot faster than an...Ch. 1.11 - The pilot of an airplane reads the altitude 6400 m...Ch. 1.11 - A glass tube is attached to a water pipe, as shown...Ch. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - A water pipe is connected to a double-U manometer...Ch. 1.11 - A gasoline line is connected to a pressure gage...Ch. 1.11 - Repeat Prob. 1110 for a pressure gage reading of...Ch. 1.11 - When measuring small pressure differences with a...Ch. 1.11 - Pressure transducers are commonly used to measure...Ch. 1.11 - Consider the flow of air through a wind turbine...Ch. 1.11 - The drag force exerted on a car by air depends on...Ch. 1.11 - It is well known that cold air feels much colder...Ch. 1.11 - Reconsider Prob. 1116E. Using appropriate...Ch. 1.11 - During a heating process, the temperature of an...Ch. 1.11 - An apple loses 3.6 kJ of heat as it cools per C...Ch. 1.11 - At sea level, the weight of 1 kg mass in SI units...Ch. 1.11 - Consider a fish swimming 5 m below the free...Ch. 1.11 - The atmospheric pressures at the top and the...Ch. 1.11 - Consider a 2.5-m-deep swimming pool. The pressure...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The triple jump is a track-and-field event in which an athlete gets a running start and tries to leap as far as...
Vector Mechanics For Engineers
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
List several uses of the arbor press.
Machine Tool Practices (10th Edition)
19.8 Calculate the allowable tensile load for the connection shown. The plates are ASTM A36 steel and the weld ...
Applied Statics and Strength of Materials (6th Edition)
Define or describe each type of fluid: (a) viscoelastic fluid (b) pseudoplastic fluid (c) dilatant fluid (d) Bi...
Fluid Mechanics: Fundamentals and Applications
Assume the following vectors are already defined: V1=[302]V2=[214]V3=[5131]V4=[0.50.10.20.2] For each of the fo...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1-107 A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. A separate metal piece, the petcock, sits on top of this open- ing and prevents steam from escaping until the pressure force overcomes the weight of the petcock. The periodic escape of the steam in this manner prevents any potentially danger- ous pressure buildup and keeps the pressure inside at a con- stant value. Determine the mass of the petcock of a pressure cooker whose operation pressure is 100 kPa gage and has an opening cross-sectional area of 4 mm2. Assume an atmo- spheric pressure of 101 kPa, and draw the free-body diagram of the petcock. Answer: 40.8 g i e Patm = 101 kPa Petcock -A = 4 mm2 1. Pressure cookerarrow_forward1-108 A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. A separate metal piece, the petcock, sits on top of this opening and prevents steam from escaping until the pressure force overcomes the weight of the petcock. The periodic escape of the steam in this manner prevents any potentially dangerous pressure buildup and keeps the pressure inside at a constant value. Determine the mass of the petcock of a pressure cooker whose operation pressure is 100 kPa gage and has an opening cross-sectional area of 4 mm². Assume an atmo- spheric pressure of 101 kPa, and draw the free-body diagram of the petcock. Answer: 40.8 g Patm = 101 kPa by air, and the eter as shown in air in the tank if PRESSURE COOKER Petcock -A = 4 mm²arrow_forwardA machinist wishes to insert a brass rod with a diameter of 3 mm into a hole with a diameter of 2.998 mm. By how much would the machinist have to lower the temperature (in °C) of the rod to make it fit the hole?arrow_forward
- 1-108 A glass tube is attached to a water pipe, as shown in Fig. P1-108. If the water pressure at the bottom of the tube is 110 kPa and the local atmospheric pressure is 99 kPa, deter- mine how high the water will rise in the tube, in m. Take the density of water to be 1000 kg/m³. Patm = 99 kPa h = ? Water FIGURE P1-108arrow_forwardConsider a double-fluid manometer attached to an air pipe shown in Fig. P1–72. If the specific gravity of one fluid is 13.55, determine the specific gravity of the other fluid forthe indicated absolute pressure of air. Take the atmospheric pressure to be 100 kPa.arrow_forward1-109E Consider a U-tube whose arms are open to the atmosphere. Now equal volumes of water and light oil (p 49.3 lbm/ft') are poured from different arms. A person blows from the oil side of the U-tube until the contact surface of the two fluids moves to the bottom of the U-tube, and thus the liquid levels in the two arms are the same. If the fluid height in each arm is 30 in, determine the gage pressure the person exerts on the oil by blowing. -Air Oil Water 30 in FIGURE P1-109Earrow_forward
- A gasoline line is connected to a pressure gage through a double-U manometer, as shown in Fig. P1–110. If the reading of the pressure gage is 370 kPa, determine the gage pressure of the gasoline line.arrow_forwardOne kilogram of water is contained in a piston-cylinder device at 100 celcius. The piston rests on lower stops such that the volume occupied by the water is 0.835 m3. The cylinder is fitted with an upper set of stops. When the piston rests against the upper stops, the volume enclosed by the piston-cylinder device is 0.841 m3. A pressure of 200 kPa is required to support the piston. Heat is added to the water until the water exists as a saturated vapor. What is the moisture of the saturated mixture when the piston hits the upper stop?arrow_forward1-99 The force generated by a spring is given by F=kx, where k is the spring constant and x is the deflection of the spring. The spring of Fig. Pl–99 has a spring constant of 8 kN/cm. The pressures are P, = 5000 kPa, P, = 10,000 kPa, and P = 1000 kPa. If the piston diameters are D, = 8 cm and D, = 3 cm, how far will the spring be deflected? Answer: 1.72 cm %3D D2 P2 Spring - P3 P1 DIarrow_forward
- The pressure inside a competion grade tennis ball is 1.6 times higher than the atmospheric pressure. The diameter and wall thicknwess of the tennis is 66 mm and 2.8 mm, respectively. Considering the atmospheric pressure as 100,000 Pa, determine the stress in the tennis ball at rest. Express the result in MPa with 2 decimal points.arrow_forward1-69 Freshwater and seawater flowing in parallel horizontal pipelines are connected to each other by a double U-tube manometer, as shown in Fig. Pl-69. Determine the pressure difference between the two pipelines. Take the density of sea- water at that location to be p = 1035 kg/m³. Can the air col- umn be ignored in the analysis? Air Fresh water 40 cm 70 cm Sea 60 cm water 10 cm ` Mercury FIGURE P1-69 1-111 manometer, often one arm of the manometer is inclined to improve the accuracy of reading. (The pressure difference is still proportional to the vertical distance and not the actual length of the fluid along the tube.) The air pressure in a cir- cular duct is to be measured using a manometer whose open arm is inclined 35° from the horizontal, as shown in Fig. PI-111. The density of the liquid in the manometer is 0.81 kg/L, and the vertical distance between the fluid levels in the two arms of the manometer is 8 cm. Determine the gage pressure of air in the duct and the length of the…arrow_forward1-31C Consider an alcohol and a mercury thermometer that read exactly 0°C at the ice point and 100°C at the steam point. The distance between the two points is divided into 100 equal parts in both thermometers. Do you think these thermometers will give exactly the same reading at a temper- ature of, say, 60°C? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license