A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. A separate metal piece, the petcock. sits on top of this opening and prevents steam from escaping until the pressure force overcomes the weight of the petcock. The periodic escape of the steam in this manner prevents any potentially dangerous pressure buildup and keeps the pressure inside at a constant value. Determine the mass of the petcock of a pressure cooker whose operation pressure is 100 kPa gage and has an opening cross-sectional area of 4 mm 2 . Assume an atmospheric pressure of 101 kPa, and draw the free-body diagram of the petcock. Answer : 40.8 g
A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. A separate metal piece, the petcock. sits on top of this opening and prevents steam from escaping until the pressure force overcomes the weight of the petcock. The periodic escape of the steam in this manner prevents any potentially dangerous pressure buildup and keeps the pressure inside at a constant value. Determine the mass of the petcock of a pressure cooker whose operation pressure is 100 kPa gage and has an opening cross-sectional area of 4 mm 2 . Assume an atmospheric pressure of 101 kPa, and draw the free-body diagram of the petcock. Answer : 40.8 g
Solution Summary: The author shows the free body diagram of the petcock of a pressure cooker.
A pressure cooker cooks a lot faster than an ordinary pan by maintaining a higher pressure and temperature inside. The lid of a pressure cooker is well sealed, and steam can escape only through an opening in the middle of the lid. A separate metal piece, the petcock. sits on top of this opening and prevents steam from escaping until the pressure force overcomes the weight of the petcock. The periodic escape of the steam in this manner prevents any potentially dangerous pressure buildup and keeps the pressure inside at a constant value. Determine the mass of the petcock of a pressure cooker whose operation pressure is 100 kPa gage and has an opening cross-sectional area of 4 mm2. Assume an atmospheric pressure of 101 kPa, and draw the free-body diagram of the petcock. Answer: 40.8 g
1.1 Consider the fireclay brick wall of Example 1.1 that is
operating under different thermal conditions. The tem-
perature distribution, at an instant in time, is T(x) = a+
bx where a 1400 K and b = -1000 K/m. Determine
the heat fluxes, q", and heat rates, q, at x = 0 and x = L.
Do steady-state conditions exist?
2.4 To determine the effect of the temperature dependence
of the thermal conductivity on the temperature dis-
tribution in a solid, consider a material for which this
dependence may be represented as
k = k₁ + aT
where k, is a positive constant and a is a coefficient that
may be positive or negative. Sketch the steady-state
temperature distribution associated with heat transfer
in a plane wall for three cases corresponding to a > 0,
a = 0, and a < 0.
1.21 A one-dimensional plane wall is exposed to convective
and radiative conditions at x = 0. The ambient and sur-
rounding temperatures are T = 20°C and Tur = 40°C,
respectively. The convection heat transfer coefficient is
h=20 W/m² K, and the absorptivity of the exposed sur-
face is α=0.78. Determine the convective and radiative
heat fluxes to the wall at x = 0 if the wall surface tem-
perature is T, = 24°C. Assume the exposed wall surface
is gray, and the surroundings are large.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.