THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 1.11, Problem 100RP
An air-conditioning system requires a 35-m-long section of 15-cm-diameier ductwork to be laid underwater. Determine the upward force the water will exert on the duct. Take the densities of air and water to be 1.3 kg/m5 and 1000 kg/m5 respectively.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(2) Figure Q2 shows a 10 m long beam which has a concentrated load of X=95 KN located at the position A on the beam (x=0 m) as well as another load Z=42 kN at the end of the beam at
position E (x=10 m). There is also a Uniform Distributed Load (UDL) of loading Y=84 kN/m which starts at position C (x=5 m) and ends at position D (x=7 m). There are two reaction pivots:
- a left one located at B (x=3 m) and a right pivot located at D (x=7 m).
Calculate the reaction force RD experienced by the pivot at the position D in terms of kilo-Newtons to 1 decimal place.
X KN
A
2m
B
2m
C
Y kN/m
2m
Figure Q2
D
D
4m
Z kN
E
Select the valid option from the list below.
E
F
G
20 kN
RAX = ?? KN
30°
30°
30°
30°
30°
30°
A
B
D
RAY = ?? KN
A The solution to the problem is found to be -10.0 kN.
B. The solution to the problem is found to be -20.0 KN.
○ C. The solution to the problem is found to be +11.5 kN.
D. The solution to the problem is found to be +23.1 kN.
E. No Valid Answer
Roy = ?? KN
Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful!
Please do not copy other's work,i will be very very grateful!!
Chapter 1 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - One of the most amusing things a person can...Ch. 1.11 - An office worker claims that a cup of cold coffee...Ch. 1.11 - What is the difference between the classical and...Ch. 1.11 - Explain why the light-year has the dimension of...Ch. 1.11 - What is the difference between pound-mass and...Ch. 1.11 - What is the net force acting on a car cruising at...Ch. 1.11 - What is the weight, in N, of an object with a mass...Ch. 1.11 - If the mass of an object is 10 lbm, what is its...Ch. 1.11 - The acceleration of high-speed aircraft is...
Ch. 1.11 - The value of the gravitational acceleration g...Ch. 1.11 - A 3-kg plastic tank that has a volume of 0.2 m3 is...Ch. 1.11 - A 2-kg rock is thrown upward with a force of 200 N...Ch. 1.11 - Solve Prob. 113 using appropriate software. Print...Ch. 1.11 - A 4-kW resistance heater in a water heater runs...Ch. 1.11 - A 150-lbm astronaut took his bathroom scale (a...Ch. 1.11 - The gas tank of a car is filled with a nozzle that...Ch. 1.11 - How would you define a system to determine the...Ch. 1.11 - A large fraction of the thermal energy generated...Ch. 1.11 - A can of soft drink at room temperature is put...Ch. 1.11 - How would you define a system to determine the...Ch. 1.11 - How would you describe the state of the air in the...Ch. 1.11 - What is the difference between intensive and...Ch. 1.11 - The specific weight of a system is defined as the...Ch. 1.11 - Is the number of moles of a substance contained in...Ch. 1.11 - Is the state of the air in an isolated room...Ch. 1.11 - What is a quasi-equilibrium process? What is its...Ch. 1.11 - Define the isothermal, isobaric, and isochoric...Ch. 1.11 - What is specific gravity? How is it related to...Ch. 1.11 - What are the ordinary and absolute temperature...Ch. 1.11 - Consider an alcohol and a mercury thermometer that...Ch. 1.11 - Consider two dosed systems A and B. System A...Ch. 1.11 - Consider a system whose temperature is 18C....Ch. 1.11 - Steam enters a heat exchanger at 300 K. What is...Ch. 1.11 - The temperature of a system rises by 130C during a...Ch. 1.11 - The temperature of a system drops by 45F during a...Ch. 1.11 - The temperature of the lubricating oil in an...Ch. 1.11 - Heated air is at 150C. What is the temperature of...Ch. 1.11 - What is the difference between gage pressure and...Ch. 1.11 - Explain why some people experience nose bleeding...Ch. 1.11 - A health magazine reported that physicians...Ch. 1.11 - Someone claims that the absolute pressure in a...Ch. 1.11 - Consider two identical fans, one at sea level and...Ch. 1.11 - The absolute pressure in a compressed air tank is...Ch. 1.11 - A manometer measures a pressure difference as 40...Ch. 1.11 - A vacuum gage connected to a chambee reads 35 kPa...Ch. 1.11 - The maximum safe air pressure of a tire is...Ch. 1.11 - A pressure gage connected to a tank reads 50 psi...Ch. 1.11 - A pressure gage connected to a tank reads 500 kPa...Ch. 1.11 - A 200-pound man has a total foot imprint area of...Ch. 1.11 - The gage pressure in a liquid at a depth of 3 m is...Ch. 1.11 - The absolute pressure in water at a depth of 9 m...Ch. 1.11 - Consider a 1.75-m-tall man standing vertically in...Ch. 1.11 - The barometer of a mountain hiker reads 750 mbars...Ch. 1.11 - The basic barometer can be used to measure the...Ch. 1.11 - A gas is contained in a vertical, frictionless...Ch. 1.11 - Reconsider Prob. 158. Using appropriate software,...Ch. 1.11 - The piston of a vertical piston-cylinder device...Ch. 1.11 - Both a gage and a manometer are attached to a gas...Ch. 1.11 - Reconsider Prob. 161. Using appropriate software,...Ch. 1.11 - A manometer containing oil ( = 850 kg/m3) is...Ch. 1.11 - A manometer is used to measure the air pressure in...Ch. 1.11 - A mercury manometer ( = 13.600 kg/m3) is connected...Ch. 1.11 - Repeat Prob. 165 for a differential mercury height...Ch. 1.11 - The pressure in a natural gas pipeline is measured...Ch. 1.11 - Repeat Prob. 167E by replacing air with oil with a...Ch. 1.11 - Blood pressure is usually measure by wrapping a...Ch. 1.11 - The maximum blood pressure in the upper arm of a...Ch. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - Consider a double-fluid manometer attached to an...Ch. 1.11 - Calculate the absolute pressure. P1, of the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - Consider the manometer in Fig. 173. If the...Ch. 1.11 - The hydraulic lift in a car repair shop has an...Ch. 1.11 - Consider the system shown in Fig. 177. If a change...Ch. 1.11 - The gage pressure of the air in the tank shown in...Ch. 1.11 - Repeat Prob. 178 for a gage pressure of 40 kPa.Ch. 1.11 - What is the value of the engineering software...Ch. 1.11 - Determine a positive real root of this equation...Ch. 1.11 - Solve this system of two equations with two...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - Solve this system of three equations with three...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - The reactive force developed by a jet engine to...Ch. 1.11 - A man goes to a traditional market to buy a steak...Ch. 1.11 - What is the weight of a 1-kg substance in N, kN,...Ch. 1.11 - The pressure in a steam boiler is given to be 92...Ch. 1.11 - A hydraulic lift is to be used to lift a 1900-kg...Ch. 1.11 - The average atmosphere pressure on earth is...Ch. 1.11 - Hyperthermia of 5C (i.e., 5C rise above the normal...Ch. 1.11 - The boiling temperature of water decreases by...Ch. 1.11 - A house is losing heat at a rate of 1800 kJ/h per...Ch. 1.11 - The average body temperature of a person rises by...Ch. 1.11 - The average temperature of the atmosphere in the...Ch. 1.11 - A vertical, frictionless pistoncylinder device...Ch. 1.11 - A vertical pistoncylinder device contains a gas at...Ch. 1.11 - The force generated by a spring is given by F =...Ch. 1.11 - An air-conditioning system requires a 35-m-long...Ch. 1.11 - Balloons are often filled with helium gas because...Ch. 1.11 - Reconsider Prob. 1101. Using appropriate software,...Ch. 1.11 - Determine the maximum amount of load, in kg, the...Ch. 1.11 - The lower half of a 6-m-high cylindrical container...Ch. 1.11 - A pressure cooker cooks a lot faster than an...Ch. 1.11 - The pilot of an airplane reads the altitude 6400 m...Ch. 1.11 - A glass tube is attached to a water pipe, as shown...Ch. 1.11 - Consider a U-tube whose arms are open to the...Ch. 1.11 - A water pipe is connected to a double-U manometer...Ch. 1.11 - A gasoline line is connected to a pressure gage...Ch. 1.11 - Repeat Prob. 1110 for a pressure gage reading of...Ch. 1.11 - When measuring small pressure differences with a...Ch. 1.11 - Pressure transducers are commonly used to measure...Ch. 1.11 - Consider the flow of air through a wind turbine...Ch. 1.11 - The drag force exerted on a car by air depends on...Ch. 1.11 - It is well known that cold air feels much colder...Ch. 1.11 - Reconsider Prob. 1116E. Using appropriate...Ch. 1.11 - During a heating process, the temperature of an...Ch. 1.11 - An apple loses 3.6 kJ of heat as it cools per C...Ch. 1.11 - At sea level, the weight of 1 kg mass in SI units...Ch. 1.11 - Consider a fish swimming 5 m below the free...Ch. 1.11 - The atmospheric pressures at the top and the...Ch. 1.11 - Consider a 2.5-m-deep swimming pool. The pressure...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics For Engineers
The following C++ program will not compile because the lines have been mixed up. cout Success\n; cout Success...
Starting Out with C++ from Control Structures to Objects (9th Edition)
How are relationships between tables expressed in a relational database?
Modern Database Management
How does a computers main memory differ from its auxiliary memory?
Java: An Introduction to Problem Solving and Programming (8th Edition)
What are the design issues for character string types?
Concepts Of Programming Languages
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Answer by selecting the correct options from the following multichoice selection. ப 4m B A C D 3m 3 m Figure Q17 FL 12 kN E 16 KN A. We should resolve forces in the horizontal direction to easily identify the internal force DF. B. The solution to the problem is found to be -16 kN (C). C. We should resolve forces in the vertical direction to first identify the internal force DF. D. We should use Method of Joints at node F to find the internal force in member DF. E. We should Method of Sections by cutting through members DF, DE and CE. F. The starting point to solve this problem is to find all reactions at nodes A and B as they will be required for DF calculations. G. The solution to the problem is found to be 16 kN (T). H. The most appropriate method to find DF use is Method of Joints. I. The most appropriate method to use is Method of Sections. J. A good starting point to solve this problem is to find the horizontal reaction at node B but this is not required to the internal forcearrow_forwardH 2 kN K 2 kN M N www RAY RAX A G B C D E F 3 m ↑ RGY 4m Fill in the multiple blanks. Figure Q19 Finding the vertical reactions is the starting point which can be done by taking moments at A and G but since this is symmetrical loading case the vertical reactions can simply be calculated by halving the total loading 4 kN. Ideally, we can solve the problem using the Method of cutting through the members JK, DJ and It would be sensible to select the left-hand side of the diagram as there are less full members and only one force from the reaction at node A. This will expose the internal forces which can be labelled with the names of the members themselves. Since we are required to find JK, examining the framework shows it is not a straight-forward matter, and we will require finding all three unknown internal forces. The easiest internal force to find is Next, we can take moments at node , as we can resolve forces in the vertical direction. in order to find the internal force JK and find…arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward
- Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward(19) Figure Q19 shows a framework consisting of horizontal members 3 m long and vertical members 4 m long. The framework is loaded at joints J and L with downward load forces of 2 kN. The applied forces cause a vertical reaction forces at A and G and no horizontal reaction force. You are asked to find the internal force in member JK - what would be your approach to solve this problem? Explain your solution process and some of your results by filling in the blanks below. 2 kN 2 kN H RAY RAX A K M N B C D E F 3 m 1 RGY 4m Fill in the multiple blanks. Figure Q19 Finding the vertical reactions is the starting point which can be done by taking moments at A and G but since this is symmetrical loading case the vertical reactions can simply be calculated by halving the total loading 4 kN. Ideally, we can solve the problem using the Method of cutting through the members JK, DJ and It would be sensible to select the left-hand side of the diagram as there are less full members and only one force…arrow_forward
- 4m A 72 kN C E B D F 144 kN 3 m 3 m 3 m Figure Q16 Fill in the multiple blanks below. To find the reactions the starting point is to take moments at a suitable node location. Since node unknowns it is the ideal location to first take moments. By taking moments in a clockwise orientation we find a moment of there is an additional moment of 288 kNm from the load at C. From combining all moments together, we can then find the vertical reaction at F which is RFy= place. For best practice, it is a good approach to take moments at has two kNm due to the force load at node B and KN to 1 decimal in order to the find the vertical reaction RAY- Finally, we can sum forces in the horizontal direction to find the reaction RAX = -72 kN, assuming the reaction at A acts left-to-right. After which we can then sum forces in the vertical direction to verify the sum of RAY plus Rgy is the same as the total downwards force which should be KN.arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward10 kN A B 1m RBY 20 kN/m 30 kN с D E 1m 1m 1m Find the vertical reaction Rgy at B Figure Q18 Find the vertical reaction REY at E Verify the reactions Rgy and REY are valid ✓ Find the Bending Moment value at C You could find the Bending Moment value at B شه A. by finding the area on the Shear Force graph left of B (treating areas underneath the x-axis as negative). B. by taking moments at B. C. by taking moments of all forces left of C. D. by taking moments at E. E. by summing all forces in a vertical direction.arrow_forward
- Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward(10) A regular cross-section XXY mm beam, where X=84 m and Y=77 m and 1800 mm long, is loaded from above in the middle with a load of Z=2 kN causing a compressive Bending Stress at the top of the beam and tensile Bending Stress at the bottom of the beam. The beam in addition experiences a tensile end loading in order to reduce the compressive stress in the beam to a near zero value. The configuration of the beam is illustrated in Figure Q10. Calculate the end loading force required in order to reduce total compressive stress experienced in the beam to be near zero? State your answer to the nearest 1 decimal place in terms of kilo-Newtons. X mm Y mm ? KN Z KN Figure Q10 1800 mm ? KNarrow_forward(13) A cylindrical beam of length 2 m and diameter of 120 mm, is arranged with a loading in the middle and two supports either end, as shown in Figure Q13. Given the shaft is made of metal which has a tensile strength of 350 MPa. Select the safest Factor of Safety (FOS) to 1 decimal place that the design engineer should work to. 100 kN ○ A. 1.2 ○ B. No Valid Answer ○ c. 1.1 O D.3.7 E. 0.8 2 m Figure Q13 120 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY