a.
Calculate the slope − intercept forms of the equations of the lines through the given points which are parallel to the given line.
a.
Answer to Problem 76E
The slope intercept form for the parallel line is
Explanation of Solution
Given:
It is given in the question that the coordinates and equation are
Concept Used:
In this , use the concept that the slope intercept form is
Calculation: The equation is
This,is the given line and is a vertical line.
So,a parallel line will also be a vertical line having the general equation ,
By,making this general equation satisfy the point
The parallel line will be :
Conclusion:
The equation is
b.
Calculate the slope − intercept forms of the equations of the lines through the given points which are perpendicular to the given line.
b.
Answer to Problem 76E
The slope intercept form for the perpendicular line is
Explanation of Solution
Given:
It is given in the question that the coordinates and equation are
Concept Used:
In this , use the concept that the slope intercept form is
Calculation: The equation is
A perpendicular line to that in the question will be a horizontal one with this general equation,
Again,make it satisfy the point
Now,the perpendicular line will be
Conclusion:
The equation is
Chapter 1 Solutions
Precalculus with Limits: A Graphing Approach
- Calculate the limit lim X-a x-a 5 using the following factorization formula where n is a positive integer and x-➡a a is a real number. x-a = (x-a) (x1+x-2a+x lim x-a X - a x-a 5 = n- + xa an-2 + an−1)arrow_forwardThe function s(t) represents the position of an object at time t moving along a line. Suppose s(1) = 116 and s(5)=228. Find the average velocity of the object over the interval of time [1,5]. The average velocity over the interval [1,5] is Vav = (Simplify your answer.)arrow_forwardFor the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1. Time Interval Average Velocity [1,2] Complete the following table. Time Interval Average Velocity [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] [1,2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] ப (Type exact answers. Type integers or decimals.) The value of the instantaneous velocity at t = 1 is (Round to the nearest integer as needed.)arrow_forward
- Find the following limit or state that it does not exist. Assume b is a fixed real number. (x-b) 40 - 3x + 3b lim x-b x-b ... Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (x-b) 40 -3x+3b A. lim x-b x-b B. The limit does not exist. (Type an exact answer.)arrow_forwardx4 -289 Consider the function f(x) = 2 X-17 Complete parts a and b below. a. Analyze lim f(x) and lim f(x), and then identify the horizontal asymptotes. x+x X--∞ lim 4 X-289 2 X∞ X-17 X - 289 lim = 2 ... X∞ X - 17 Identify the horizontal asymptotes. Select the correct choice and, if necessary, fill in the answer box(es) to complete your choice. A. The function has a horizontal asymptote at y = B. The function has two horizontal asymptotes. The top asymptote is y = and the bottom asymptote is y = ☐ . C. The function has no horizontal asymptotes. b. Find the vertical asymptotes. For each vertical asymptote x = a, evaluate lim f(x) and lim f(x). Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. earrow_forwardExplain why lim x²-2x-35 X-7 X-7 lim (x+5), and then evaluate lim X-7 x² -2x-35 x-7 x-7 Choose the correct answer below. A. x²-2x-35 The limits lim X-7 X-7 and lim (x+5) equal the same number when evaluated using X-7 direct substitution. B. Since each limit approaches 7, it follows that the limits are equal. C. The numerator of the expression X-2x-35 X-7 simplifies to x + 5 for all x, so the limits are equal. D. Since x²-2x-35 X-7 = x + 5 whenever x 7, it follows that the two expressions evaluate to the same number as x approaches 7. Now evaluate the limit. x²-2x-35 lim X-7 X-7 = (Simplify your answer.)arrow_forwardA function f is even if f(x) = f(x) for all x in the domain of f. If f is even, with lim f(x) = 4 and x-6+ lim f(x)=-3, find the following limits. X-6 a. lim f(x) b. +9-←x lim f(x) X-6 a. lim f(x)= +9-←x (Simplify your answer.) b. lim f(x)= X→-6 (Simplify your answer.) ...arrow_forwardEvaluate the following limit. lim X-X (10+19) Select the correct answer below and, if necessary, fill in the answer box within your choice. 10 A. lim 10+ = 2 ☐ (Type an integer or a simplified fraction.) X-∞ B. The limit does not exist.arrow_forwardFind the following limit or state that it does not exist. x² +x-20 lim x-4 x-4 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. lim x²+x-20 x-4 (Type an exact answer.) x→4 B. The limit does not exist.arrow_forwardDetermine the intervals on which the following function is continuous. f(x) = x - 5x + 6 2 X-9 On what interval(s) is f continuous? (Simplify your answer. Type your answer in interval notation. Use a comma to separate answers as needed.)arrow_forwardFind the following limit or state that it does not exist. 2 3x² +7x+2 lim X-2 6x-8 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. lim 3x²+7x+2 6x-8 (Simplify your answer.) X-2 B. The limit does not exist.arrow_forwardFind the following limit or state that it does not exist. X-2 lim x-2 5x+6 - 4 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O A. lim X-2 X-2 15x+6 = (Type an exact answer.) - 4 B. The limit does not exist.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning