Concept explainers
You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.500 kg and length ℓ = 2.00 m hangs from a friction-free pivot at its upper end as shown in Figure P11.43. The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.0 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position, you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this technique.
Figure P11.43
Trending nowThis is a popular solution!
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
- You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a new game of skill. A thin rod of mass M = 0.500 kg and length = 2.00 m hangs from a friction-free pivot at its upper end as shown in Figure P11.43. The front surface of the rod is covered with Velcro. You are to throw a Velcro-covered ball of mass m = 1.0 kg at the rod in an attempt to make it swing backward and rotate all the way across the top. The ball must stick to the rod at all times after striking it. If you cause the rod to rotate over the top position, you win a stuffed animal. Your friend volunteers to try his luck. He feels that the most torque would be applied to the rod by striking it at its lowest end. While he prepares to aim at the lowest point on the rod, you calculate how fast he must throw the ball to win the stuffed animal with this technique. Figure P11.43arrow_forwardFigure OQ10.8 shows a system of four particles joined by light, rigid rods. Assume a = b and M is larger than m. About which of the coordinate axes does the system have (i) the smallest and (ii) the largest moment of inertia? (a) the x axis (b) the y axis (c) the z axis. (d) The moment of inertia has the same small value for two axes. (e) The moment of inertia is the same for all three axes. Figure OQ10.8arrow_forwardA cam of mass M is in the shape of a circular disk of diameter 2R with an off-center circular hole of diameter R is mounted on a uniform cylindrical shaft whose diameter matches that of the hole (Fig. P1 3.78). a. What is the rotational inertia of the cam and shaft around the axis of the shaft? b. What is the rotational kinetic energy of the cam and shaft if the system rotates with angular speed around this axis?arrow_forward
- In Figure P10.40, the hanging object has a mass of m1 = 0.420 kg; the sliding block has a mass of m2 = 0.850 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface is k = 0.250. The pulley turns without friction on its axle. The light cord does not stretch and does not slip on the pulley. The block has a velocity of vi = 0.820 m/s toward the pulley when it passes a reference point on the table. (a) Use energy methods to predict its speed after it has moved to a second point, 0.700 m away. (b) Find the angular speed of the pulley at the same moment. Figure P10.40arrow_forwardA wheel of inner radius r1 = 15.0 cm and outer radius r2 = 35.0 cm shown in Figure P12.43 is free to rotate about the axle through the origin O. What is the magnitude of the net torque on the wheel due to the three forces shown? FIGURE P12.43arrow_forwardA projectile of mass m moves to the right with a speed vi (Fig. P10.81a). The projectile strikes and sticks to the end of a stationary rod of mass M, length d, pivoted about a frictionless axle perpendicular to the page through O (Fig. P10.81b). We wish to find the fractional change of kinetic energy in the system due to the collision. (a) What is the appropriate analysis model to describe the projectile and the rod? (b) What is the angular momentum of the system before the collision about an axis through O? (c) What is the moment of inertia of the system about an axis through O after the projectile sticks to the rod? (d) If the angular speed of the system after the collision is , what is the angular momentum of the system after the collision? (e) Find the angular speed after the collision in terms of the given quantities. (f) What is the kinetic energy of the system before the collision? (g) What is the kinetic energy of the system after the collision? (h) Determine the fractional change of kinetic energy due to the collision. Figure P10.81arrow_forward
- Chapter 11, Problem 066 GO Your answer is partially correct. Try again. In the figure, a small 0.109 kg block slides down a frictionless surface through height h = 1.46 m and then sticks to a uniform vertical rod of mass M = 0.218 kg and length d = 1.55 m. The rod pivots about point O through angle e before momentarily stopping. Find 0. Number Units (degrees) em the tolerance is +/-2% em Click if you would like to Show Work for this question: Open Show Workarrow_forwardYou have a cylinder. You don't know what its internal structure looks like, but you plan to roll it down a ramp, as in this week's procedure. The ramp is 1 m long, and is elevated at an angle of 15°. The mass of the cylinder is 450 g and its diameter is 2.1 cm.After you release the cylinder, it rolls down the ramp without slipping, gaining speed. How much total energy (in J)does the block have at the bottom of the ramp?arrow_forwardA small 11.0 g bug stands at one end of a thin uniform bar that is initially at rest on a smooth horizontal table. The other end of the bar pivots about a nail driven into the table and can rotate freely, without friction. The bar has mass 70.0 g and is 90 cm in length. The bug jumps off in the horizontal direction, perpendicular to the bar, with a speed of 25.0 cm/s relative to the table. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Angular momentum in a crime bust Part A What is the angular speed of the bar just after the frisky insect leaps? Express your answer in radians per second. 15| ΑΣΦ W = Submit Provide Feedback Request Answer ? rad/sarrow_forward
- In the figure, a small 0.433 kg block slides down a frictionless surface through height h = 0.304 m and then sticks to a uniform vertical rod of mass M = 0.866 kg and length d = 1.65 m. The rod pivots about point O through angle 0 before momentarily stopping. Find 0. Number i Unitsarrow_forwardA block of wood is attached to a very lightweight metal rod, which is attached to a fixed pivot point on a table. The block is able to slide on the table with negligible friction, and the pivot is also free to rotate with negligible friction. The block's mass is M and the rod's length is ℓ. A bullet is moving parallel to the table and perpendicular to the rod when it collides and embeds within the block. The bullet's speed just before entering the block is v and its mass is m. (a) Find the angular momentum of the combined bullet–block system about the vertical pivot axis. (Use any variable or symbol stated above as necessary. Enter the magnitude.) L=---- (b) Find the fraction of the original kinetic energy of the bullet that is converted into internal energy within the bullet-block system during the collision. (Use any variable or symbol stated above as necessary.)arrow_forwardA disk of mass 2.00 kg and diameter 50.0 cm is rotating without slipping across a level floor at a rate of 6.28 rad/s. What is the toptal kinetic energy of the disk? O 2.46 J O 4.92 J O 3.69 J O 14.79 Jarrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning