Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 21P
To determine
The horizontal acceleration of the motor cycle that makes the front wheel rise off the ground.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The distance between the centers of a motorcycle's wheels is 220 cm. The motorcycle's center of mass (including the bike rider) is 46.0 cm above the ground and is in the middle of the road between the two wheels. Assume that the mass of each wheel is smaller than the frame mass of the motorcycle. The engine only drives the rear wheel. How much horizontal acceleration does the motorcycle need to get the front wheel up?
A tightrope walker is walking between two buildings holding a pole with length ?=15.5 m, and mass ??=19.5 kg. The daredevil grips the pole with each hand a distance ?=0.575 m from the center of the pole. A bird of mass ??=525 g lands on the very end of the left‑hand side of the pole.
Assuming the daredevil applies upward forces with the left and right hands in a direction perpendicular to the pole, what magnitude of force ?left and ?right must the left and right hand exert to counteract the torque of the bird?
A long piece of lumber is pivoted to rotate about a perpendicular axis. Ropes are
attached to the ends such that they pull on the lumber in opposite directions. The angle
between the ropes and the wood is 72°, as shown below. The piece of wood is attached
to the diameter of a large cylinder whose mass is 0.800 kg and whose diameter is 1.15
meters. The wood is 2.30 meters long and has a mass of 0.75 kg. The tension in each
is 8.70 Newtons. Find the angular acceleration of the wood – cylinder
rope
combination.
720
Solid cylinder
or disk
MR?
Long thin rod
with rotation axis
through center
I= MI?
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 11.1 - Which of the following statements about the...Ch. 11.2 - Recall the skater described at the beginning of...Ch. 11.3 - A solid sphere and a hollow sphere have the same...Ch. 11.4 - A competitive diver leaves the diving board and...Ch. 11 - Prob. 1PCh. 11 - The displacement vectors 42.0 cm at 15.0 and 23.0...Ch. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Two forces F1 and F2 act along the two sides of an...Ch. 11 - A student claims that he has found a vector A such...
Ch. 11 - A particle is located at a point described by the...Ch. 11 - A 1.50-kg particle moves in the xy plane with a...Ch. 11 - Prob. 9PCh. 11 - Heading straight toward the summit of Pikes Peak,...Ch. 11 - Review. A projectile of mass m is launched with an...Ch. 11 - Prob. 12PCh. 11 - A particle of mass m moves in a circle of radius R...Ch. 11 - A 5.00-kg particle starts from the origin at time...Ch. 11 - A ball having mass m is fastened at the end of a...Ch. 11 - Prob. 16PCh. 11 - A uniform solid disk of mass m = 3.00 kg and...Ch. 11 - Show that the kinetic energy of an object rotating...Ch. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - A 60.0-kg woman stands at the western rim of a...Ch. 11 - Prob. 24PCh. 11 - A uniform cylindrical turntable of radius 1.90 m...Ch. 11 - Prob. 26PCh. 11 - A wooden block of mass M resting on a...Ch. 11 - Prob. 28PCh. 11 - A wad of sticky clay with mass m and velocity vi...Ch. 11 - A 0.005 00-kg bullet traveling horizontally with a...Ch. 11 - The angular momentum vector of a precessing...Ch. 11 - A light rope passes over a light, frictionless...Ch. 11 - Prob. 33APCh. 11 - Prob. 34APCh. 11 - We have all complained that there arent enough...Ch. 11 - Prob. 36APCh. 11 - A rigid, massless rod has three particles with...Ch. 11 - Prob. 38APCh. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Native people throughout North and South America...Ch. 11 - Two children are playing on stools at a restaurant...Ch. 11 - You are attending a county fair with your friend...Ch. 11 - Prob. 44APCh. 11 - Global warming is a cause for concern because even...Ch. 11 - The puck in Figure P11.46 has a mass of 0.120 kg....Ch. 11 - Prob. 47APCh. 11 - A solid cube of wood of side 2a and mass M is...Ch. 11 - Prob. 49CPCh. 11 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardA propeller consists of two blades each 3.0 m in length and mass 120 kg each. The propeller can be approximated by a single rod rotating about its center of mass. The propeller starts from rest and rotates up to 1200 rpm in 30 seconds at a constant rate. (a) What is the angular momentum of the propeller at t=10s ; t=20s ? (b) What is the torque on the propeller?arrow_forwardFigure P10.82 shows a vertical force applied tangentially to a uniform cylinder of weight Fg. The coefficient of static friction between the cylinder and all surfaces is 0.500. The force P is increased in magnitude until the cylinder begins to rotate. In terms of Fg, find the maximum force magnitude P that can be applied without causing the cylinder to rotate. Suggestion: Show that both friction forces will be at their maximum values when the cylinder is on the verge of slipping. Figure P10.82arrow_forward
- A student rides his bicycle at a constant speed of 3.00 m/s along a straight, level road. If the bikes tires each have a radius of 0.350 m, (a) what is the tires angular speed? (See Section 7.3.) (b) What is the net torque on each tire? (See Section 8.5.)arrow_forwardA student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forwardConsider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forward
- The velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardThe fishing pole in Figure P10.22 makes an angle of 20.0 with the horizontal. What is the torque exerted by the fish about an axis perpendicular to the page and passing through the anglers hand if the fish pulls on the fishing line with a force F=100N at an angle 37.0 below the horizontal? The force is applied at a point 2.00 m from the anglers hands. Figure P10.22arrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forward
- A constant net torque is applied to an object. Which one of the following will not be constant? (a) angular acceleration, (b) angular velocity, (c) moment of inertia, or (d) center of gravity.arrow_forwardA wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R (Fig. P10.75). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the claycylinder system constant in this process? Explain your answer. (c) Is the momentum of the claycylinder system constant in this process? Explain your answer. Figure P10.75arrow_forwardConsider the disk in Problem 71. The disks outer rim hasradius R = 4.20 m, and F1 = 10.5 N. Find the magnitude ofeach torque exerted around the center of the disk. FIGURE P12.71 Problems 71-75arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License