Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 50CP
To determine
The minimum value of magnitude of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
At what angular speed does the door swing open immediately after the collision?
Calculate the total energy of the bullet-door system and determine whether it is less than or equal to the kinetic energy of the bullet before the collision. answer in rad/s
KEf
=
J
KEi
=
J
If so, evaluate this angular momentum. (If not, enter zero.)
answer kg.m^2/2
A solid cube of side 2a and mass M is sliding on a frictionless surface with uniform velocity → v as shown in Figure . It hits a small obstacle at the end of the table that causes the cube to tilt as shown in Figure P11.50b. Find the minimum value of the magnitude of → v such that the cube tips over and falls off the table. Note: The cube undergoes an inelastic collision at the edge.
P
Figure 7.13: Two disks collide and stick together. See Problem 7.17.
Problem 7.18 Figure 7.13 is a view from above, showing two identical disks
of mass M and radius R on a frictionless surface. One disk is at rest, the other
is rotating counterclockwise with angular
velocity v =
P. After the collision the two disks stick together. Determine the final angular
momentum of the system with respect to P. (From a GRE exam.)
ocity w and is moving with a linear
SwR. It makes a grazing collision with the second disk at point
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 11.1 - Which of the following statements about the...Ch. 11.2 - Recall the skater described at the beginning of...Ch. 11.3 - A solid sphere and a hollow sphere have the same...Ch. 11.4 - A competitive diver leaves the diving board and...Ch. 11 - Prob. 1PCh. 11 - The displacement vectors 42.0 cm at 15.0 and 23.0...Ch. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Two forces F1 and F2 act along the two sides of an...Ch. 11 - A student claims that he has found a vector A such...
Ch. 11 - A particle is located at a point described by the...Ch. 11 - A 1.50-kg particle moves in the xy plane with a...Ch. 11 - Prob. 9PCh. 11 - Heading straight toward the summit of Pikes Peak,...Ch. 11 - Review. A projectile of mass m is launched with an...Ch. 11 - Prob. 12PCh. 11 - A particle of mass m moves in a circle of radius R...Ch. 11 - A 5.00-kg particle starts from the origin at time...Ch. 11 - A ball having mass m is fastened at the end of a...Ch. 11 - Prob. 16PCh. 11 - A uniform solid disk of mass m = 3.00 kg and...Ch. 11 - Show that the kinetic energy of an object rotating...Ch. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - A 60.0-kg woman stands at the western rim of a...Ch. 11 - Prob. 24PCh. 11 - A uniform cylindrical turntable of radius 1.90 m...Ch. 11 - Prob. 26PCh. 11 - A wooden block of mass M resting on a...Ch. 11 - Prob. 28PCh. 11 - A wad of sticky clay with mass m and velocity vi...Ch. 11 - A 0.005 00-kg bullet traveling horizontally with a...Ch. 11 - The angular momentum vector of a precessing...Ch. 11 - A light rope passes over a light, frictionless...Ch. 11 - Prob. 33APCh. 11 - Prob. 34APCh. 11 - We have all complained that there arent enough...Ch. 11 - Prob. 36APCh. 11 - A rigid, massless rod has three particles with...Ch. 11 - Prob. 38APCh. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Native people throughout North and South America...Ch. 11 - Two children are playing on stools at a restaurant...Ch. 11 - You are attending a county fair with your friend...Ch. 11 - Prob. 44APCh. 11 - Global warming is a cause for concern because even...Ch. 11 - The puck in Figure P11.46 has a mass of 0.120 kg....Ch. 11 - Prob. 47APCh. 11 - A solid cube of wood of side 2a and mass M is...Ch. 11 - Prob. 49CPCh. 11 - Prob. 50CP
Knowledge Booster
Similar questions
- A wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R (Fig. P11.29). The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is the mechanical energy of the claycylinder system constant in this process? Explain your answer. (c) Is the momentum of the claycylinder system constant in this process? Explain your answer. Figure P11.29arrow_forwardShown below is a small particle of mass 20 g that is moving at a speed of 10.0 m/s when it collides and sticks to the edge of a uniform solid cylinder. The cylinder is free to rotate about its axis through its center and is perpendicular to the page. The cylinder has a mass of 0.5 kg and a radius of 10 cm, and is initially at rest. (a) What is the angular velocity of the system after the collision? (b) How much kinetic energy is lost in the collision?arrow_forwardTwo astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forward
- A long, thin rod of mass m = 5.00 kg and length = 1.20 m rotates around an axis perpendicular to the rod with an angularspeed of 3.00 rad/s. a. What is the angular momentum of therod if the axis passes through the rods midpoint? b. What is theangular momentum of the rod if the axis passes through a pointhalfway between its midpoint and its end?arrow_forwardA projectile of mass m moves to the right with a speed vi (Fig. P10.81a). The projectile strikes and sticks to the end of a stationary rod of mass M, length d, pivoted about a frictionless axle perpendicular to the page through O (Fig. P10.81b). We wish to find the fractional change of kinetic energy in the system due to the collision. (a) What is the appropriate analysis model to describe the projectile and the rod? (b) What is the angular momentum of the system before the collision about an axis through O? (c) What is the moment of inertia of the system about an axis through O after the projectile sticks to the rod? (d) If the angular speed of the system after the collision is , what is the angular momentum of the system after the collision? (e) Find the angular speed after the collision in terms of the given quantities. (f) What is the kinetic energy of the system before the collision? (g) What is the kinetic energy of the system after the collision? (h) Determine the fractional change of kinetic energy due to the collision. Figure P10.81arrow_forwardA thin rod of length L is falling freely in horizontal position from a height H above the surface of the table, in such a way that the end of the rod just hits the edge of the table. This collision is instantaneous and totally elastic (i.e. the mechanical energy is conserved). At what time after the collision does the rod perform a whole revolution? Where is its centre at that moment? (H = 80 cm, L = 10 cm)arrow_forward
- A 550.0 g bird is flying horizontally at 2.25 m/s, not paying much attention, when it suddenly flies into a stationary vertical bar, hitting it 25.0 cm below the top. The bar is uniform, 0.700 m long, has a mass of 2.10 kg, and is hinged at its base. The collision stuns the bird so that it just drops to the ground afterward (but soon recovers to fly happily away). a) What is the angular velocity of the bar just after it is hit by the bird? b) What is the angular velocity of the bar just as it reaches the ground?arrow_forwardPlz helparrow_forwardIn (Figure 1), take m = 3.2 kg and mp = 4.6 kg. Figure 5 m 4 m 8 m/s 3 5 4 m 1.5 m MAA 0 1 2 m ↓ 4 m m MB B 30⁰arrow_forward
- Wind energy is gaining increased attention, generating an increased interest in windmill technology. Because windmill blades (vanes) rotate about a central axis, one of the most important physical properties of a windmill is its moment of inertia. Given is a picture of a typical windmill, where the Center of mass geometry and center of mass of one of the vanes is illustrated. The mass of each vane is 207 kg. The distance from the center of mass of the vane to axis B is k, = 2.45 m. The distance from the center of mass of the vane to the center of the windmill hub is k, = 3.80 m. If the moment of inertia of a vane about axis A is 241 kg-m2 and about axis B is 5860 kg-m2, calculate the moment of inertia Itotal of the entire assembly about the axis that passes through the windmill's hub and is perpendicular to the screen. (Ignore the hub and assume the vanes are flat.) I total kg-m? IIarrow_forwardBefore the collision, the cylinder was not rotating. What is the magnitude of its angular velocity after the collision? (units- rad/s)arrow_forwardA solid cylinder of mass M = 42 kg, radius R = 0.17 m and uniform density is pivoted on a frictionless axle coaxial with its symmetry axis. A particle of mass m = 2.2 kg and initial velocity vo = %3D %3D 12 m/s (perpendicular to the cylinder's axis) flies too close to the cylinder's edge, collides with the cylinder and sticks to it.Before the collision, the cylinder was not rotating. What is the magnitude of its angular velocity after the collision? Your answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill