Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 36AP
To determine
To explain: The reason for which the situation is impossible.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An exotic planet Vogsphere is known to have a mass that is 1/81 that of the Earth and a radius 0.25 that of the Earth. Astrophysicist Trillian built a rocket and decided to leave the planet and never to return. Given that the escape speed from the Earth is 11.2 km/s, with what speed must Trillian achieve his goal?
Suppose we drill a hole through the Earth along its diameter and drop a small mass m down the hole. Assume that the Earth is not rotating and has a uniform density throughout its volume. The Earth’s mass is ME and its radius is RE. Let r be the distance from the falling object to the center of the Earth.
Derive an expression for the gravitational force on the small mass as a function of r when it is moving inside the Earth.
Derive an expression for the gravitational force on the small mass as a function of r when it is outside the Earth.
On the graph below, plot the gravitational force on the small mass as a function of its distance r from the center of the Earth.
Determine the work done by the gravitational force on the mass as it moves from the surface to the center.
What is the speed of the mass at the center of the Earth if the Earth has a given density
Determine the time it takes the mass to move from the surface to the center of the Earth.
A planet has a mass of 4.0 × 1024 kg and a radius of R = 5.0 × 106 m. A cannon on the planet's surface launches a projectile directly away from the planet's surface so that it reaches a distance of 1.5 × 107 m from the planet's center. At what speed was the projectile launched?
Group of answer choices
1.0 × 104 m/s
6.0 × 103 m/s
4.9 × 103 m/s
8.4 × 103 m/s
1.5 × 104 m/s
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 11.1 - Which of the following statements about the...Ch. 11.2 - Recall the skater described at the beginning of...Ch. 11.3 - A solid sphere and a hollow sphere have the same...Ch. 11.4 - A competitive diver leaves the diving board and...Ch. 11 - Prob. 1PCh. 11 - The displacement vectors 42.0 cm at 15.0 and 23.0...Ch. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Two forces F1 and F2 act along the two sides of an...Ch. 11 - A student claims that he has found a vector A such...
Ch. 11 - A particle is located at a point described by the...Ch. 11 - A 1.50-kg particle moves in the xy plane with a...Ch. 11 - Prob. 9PCh. 11 - Heading straight toward the summit of Pikes Peak,...Ch. 11 - Review. A projectile of mass m is launched with an...Ch. 11 - Prob. 12PCh. 11 - A particle of mass m moves in a circle of radius R...Ch. 11 - A 5.00-kg particle starts from the origin at time...Ch. 11 - A ball having mass m is fastened at the end of a...Ch. 11 - Prob. 16PCh. 11 - A uniform solid disk of mass m = 3.00 kg and...Ch. 11 - Show that the kinetic energy of an object rotating...Ch. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - A 60.0-kg woman stands at the western rim of a...Ch. 11 - Prob. 24PCh. 11 - A uniform cylindrical turntable of radius 1.90 m...Ch. 11 - Prob. 26PCh. 11 - A wooden block of mass M resting on a...Ch. 11 - Prob. 28PCh. 11 - A wad of sticky clay with mass m and velocity vi...Ch. 11 - A 0.005 00-kg bullet traveling horizontally with a...Ch. 11 - The angular momentum vector of a precessing...Ch. 11 - A light rope passes over a light, frictionless...Ch. 11 - Prob. 33APCh. 11 - Prob. 34APCh. 11 - We have all complained that there arent enough...Ch. 11 - Prob. 36APCh. 11 - A rigid, massless rod has three particles with...Ch. 11 - Prob. 38APCh. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Two astronauts (Fig. P11.39), each having a mass...Ch. 11 - Native people throughout North and South America...Ch. 11 - Two children are playing on stools at a restaurant...Ch. 11 - You are attending a county fair with your friend...Ch. 11 - Prob. 44APCh. 11 - Global warming is a cause for concern because even...Ch. 11 - The puck in Figure P11.46 has a mass of 0.120 kg....Ch. 11 - Prob. 47APCh. 11 - A solid cube of wood of side 2a and mass M is...Ch. 11 - Prob. 49CPCh. 11 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardWhy is the following situation impossible? A space station shaped like a giant wheel has a radius of r = 100 m and a moment of inertia of 5.00 108 kg m2. A crew of 150 people of average mass 65.0 kg is living on the rim, and the stations rotation causes the crew to experience an apparent free-fall acceleration of g (Fig. P10.52). A research technician is assigned to perform an experiment in which a ball is dropped at the rim of the station every 15 minutes and the time interval for the ball to drop a given distance is measured as a test to make sure the apparent value of g is correctly maintained. One evening, 100 average people move to the center of the station for a union meeting. The research technician, who has already been performing his experiment for an hour before the meeting, is disappointed that he cannot attend the meeting, and his mood sours even further by his boring experiment in which every time interval for the dropped ball is identical for the entire evening.arrow_forwardMath Review (a) Convert 47.0 to radians, using the appropriate conversion ratio. (b) Convert 2.35 rad to degrees. (c) If a circle has radius 1.70 m, what is the are length subtended by a 47.0 angle? (See Sections 1.5 and 7.1.)arrow_forward
- Two stars of masses M and m, separated by a distance d, revolve in circular orbits about their center of mass (Fig. P11.50). Show that each star has a period given by T2=42d3G(M+m) Proceed as follows: Apply Newtons second law to each star. Note that the center-of-mass condition requires that Mr2 = mr1, where r1 + r2 = d.arrow_forwardModel the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardSince March 2006, NASAs Mars Reconnaissance Orbiter (MRO) has been in a circular orbit at an altitude of 316 km around Mars (Fig. P6.81). The acceleration due to gravity on the surface of the planet Mars is 0.376g, and its radius is 3.40 103 km. Assume the acceleration due to gravity at the satellite is the same as on the planets surface. a. What is MROs orbital speed? B. What is the period of the spacecrafts orbit? FIGURE P6.81arrow_forward
- A star rotates with a period of 30 days about an axis through its center. The period is the time interval required for a point on the star's equator to make one complete revolution around the axis of rotation. After the star undergoes a supernova explosion, the stellar core, which had a radius of 1.0 x 104 km, collapses into a neutron star of radius 3.0 km. Determine the period of rotation of the neutron star.arrow_forwardA pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. Suppose a pulsar has a period of rotation of T = 0.0985 s that is increasing at the rate of 7.64 x 10-8 s/y. (a) What is the pulsar's angular acceleration αα? (b) If αα is constant, how many years from now will the pulsar stop rotating? (c) Suppose the pulsar originated in a supernova explosion seen 987 years ago. Assuming constant αα, find the initial T.arrow_forwardIn 2014, the Rosetta space probe reached the comet Churyumov– Gerasimenko. Although the comet’s core is actually far from spherical, in this problem we’ll model it as a sphere with a mass of 1.0 x 1013 kg and a radius of 1.6 km. If a rock were dropped from a height of 1.0 m above the comet’s surface, how long would it take to hit the surface?arrow_forward
- A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. Suppose a pulsar has a period of rotation of T = 0.0718 s that is increasing at the rate of 5.96 x 10-8 s/y. (a) What is the pulsar's angular acceleration α? (b) If α is constant, how many years from now will the pulsar stop rotating? (c) Suppose the pulsar originated in a supernova explosion seen 1090 years ago. Assuming constant α, find the initial T.arrow_forwardA small asteroid that has a mass of 1.00×102 kg is moving at 7.00×102 m/s when it is 1.00×103 km above the Moon. The radius of the Moon is 1.74×106 m.At what speed ?impact will the asteroid be traveling when it impacts the lunar surface if it is heading straight toward the center of the Moon? How much work ? does the Moon do in stopping the asteroid if neither the Moon nor the asteroid heats up in the process?arrow_forwardA pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. Suppose a pulsar has a period of rotation of T = 0.0238 s that is increasing at the rate of 6.24 x 10- 8 s/y. (a) What is the pulsar's angular acceleration α? (b) If α is constant, how many years from now will the pulsar stop rotating? (c) Suppose the pulsar originated in a supernova explosion seen 1070 years ago. Assuming constant α, find the initial T.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning