Concept explainers
A rigid, massless rod has three particles with equal masses attached to it as shown in Figure P11.37. The rod is free to rotate in a vertical plane about a frictionless axle perpendicular to the rod through the point P and is released from rest in the horizontal position at t = 0. Assuming m and d are known, find (a) the moment of inertia of the system of three particles about the pivot, (b) the torque acting on the system at t = 0, (c) the
Figure P11.37
(a)
The moment of inertia of the system of three particles about the pivot.
Answer to Problem 37AP
The moment of inertia of the system of three particles about the pivot is
Explanation of Solution
Given information:
The mass of three particles is
The formula to calculate moment of inertia is,
The distance of the particle 1 from point P is,
The distance of the particle 2 from point P is,
Substitute
Conclusion:
Therefore, the moment of inertia of the system of three particles about the pivot is
(b)
The torque acting on the system at
Answer to Problem 37AP
The torque acting on the system at
Explanation of Solution
Given information:
The mass of three particles is
Consider that the whole weight,
The formula to calculate torque is,
Substitute
Conclusion:
Therefore, the torque acting on the system at
(c)
The angular acceleration of the system at
Answer to Problem 37AP
The angular acceleration of the system at
Explanation of Solution
Given information:
The mass of three particles is
The formula to calculate angular acceleration is,
Substitute
Conclusion:
Therefore, the angular acceleration of the system at
(d)
The linear acceleration of the particle 3 at
Answer to Problem 37AP
The linear acceleration of the particle 3 at
Explanation of Solution
Given information:
The mass of three particles is
The formula to calculate linear acceleration is,
Substitute
Conclusion:
Therefore, the linear acceleration of the particle 3 at
(e)
The maximum kinetic energy of the system.
Answer to Problem 37AP
The maximum kinetic energy of the system is
Explanation of Solution
Given information:
The mass of three particles is
Because the axle is fixed, no external work is performed on the system of the earth and three particles, so the total mechanical energy is conserved.
The rotation kinetic energy is maximum when rod has swung to a vertical orientation with the centre of gravity directly under the axle.
The expression for the energy is,
Conclusion:
Therefore, the maximum kinetic energy of the system is
(f)
The maximum angular speed reached by the rod.
Answer to Problem 37AP
The maximum angular speed reached by the rod is
Explanation of Solution
Given information:
The mass of three particles is
In the vertical orientation, the rod has the greatest rotational kinetic energy.
The expression for the kinetic energy is,
Substitute
Conclusion:
Therefore, the maximum angular speed reached by the rod is
(g)
The maximum angular momentum of the system.
Answer to Problem 37AP
The maximum angular momentum of the system is
Explanation of Solution
Given information:
The mass of three particles is
The expression for the angular momentum is,
Substitute
Conclusion:
Therefore, the maximum angular momentum of the system is
(h)
The maximum speed of particle 2.
Answer to Problem 37AP
The maximum speed of particle 2 is
Explanation of Solution
Given information:
The mass of three particles is
The expression for the speed is,
Substitute
Conclusion:
Therefore, the maximum speed of particle 2 is
Want to see more full solutions like this?
Chapter 11 Solutions
Physics for Scientists and Engineers with Modern Physics
- Solve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forwardsolve and answer the problem correctly please. Thank you!!arrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardWhen the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forward
- The car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardr 2. Measuring Length mm 1 cm 2 3 INCH 1 16THS 5 6 7 8 9 10 11 FAIRGATE COLD SPRING, NEW YORK 2 3 12 1. Using the metric (top) scale only, what units are being used for the long lines with the numbers? Hint: Remember that 2.54 cm = 1 in. 2. What are the units of the small lines? 3. How many decimal places should be recorded using this tool? 4. What is the length of the red line? Note: Make sure to use the correct units and decimal places. 5. Now observe your ruler. What metric units are used on your ruler? 6. How many decimal places should you record when using your ruler? 7. Measure a box, book, coin and can and fill out the data table below. Make sure to use units and the correct number of decimal places for your ruler. Table 1: Measuring Length Data Table Object Length of the box Length Local PR Distribution Only $99/Release. Get Started On Our Website Now! V 2 217arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning