Chemistry for Engineering Students
4th Edition
ISBN: 9781337398909
Author: Lawrence S. Brown, Tom Holme
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 11.95PAE
The following is a thought experiment. Imagine that you put a little water in a test tube and add some NaF crystals. Immediately after you add NaF, you observe that the crystals begin dissolving. The quantity of solid NaF decreases, hut before long, it appears that no more NaF is dissolving. The solution is saturated.
- The equation for the dissolution of NaF in water is NaF(s) —* Na (aq) + F~(aq). As NaF dissolves, what do you think happens to the rate of dissolution? Describe w hat is occurring on the molecular level.
- Assume that the reverse reaction, Na+(aq) + F“(aq) —* NaF(s), also occurs as the crystal dissolves. In other words, both dissolution and precipitation are taking place. When it appears that there is no more change in the quantin’ of NaF dissolving (the solution is saturated), w hat has happened to the rates of the forward and reverse reactions? Explain your answer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Will a precipitate form if 750.00 mL of a 4.0 x 10-3 mol/L solution of Cerium (III) nitrate, Ce(NO3)3(aq), is mixed in a beaker with 300.00 mL of a 2.0 x 10-2 mol/L solution of potassium iodate, KIO3(aq)?The Ksp for Cerium (III) iodiate, Ce(IO3)3 (s), is 1.9 x 10-10. Justify your answer. n:
Will a precipitate form if 750.00 mL of a 4.0 x 10-3 mol/L solution of Cerium (III) nitrate, Ce(NO3)3(aq), is mixed in a beaker with 300.00 mL of a 2.0 x 10-2 mol/L solution of potassium iodate, KIO3(aq)?The Ksp for Cerium (III) iodiate, Ce(IO3)3 (s), is 1.9 x 10-10. Justify your answer. *There are 6 steps to arrive at the answer. Show all work.Start by writing out a balanced equation for the double displacement equation:
Chapter 11 Solutions
Chemistry for Engineering Students
Ch. 11 - Prob. 1COCh. 11 - . define the rate of a chemical reaction and...Ch. 11 - Prob. 3COCh. 11 - Prob. 4COCh. 11 - . explain the difference between elementary...Ch. 11 - . find the rate law predicted for a particular...Ch. 11 - . use a molecular perspective to explain the...Ch. 11 - Prob. 8COCh. 11 - . explain the role of a catalyst in the design of...Ch. 11 - Prob. 11.1PAE
Ch. 11 - List two types of chemical compounds that must be...Ch. 11 - Prob. 11.3PAECh. 11 - Prob. 11.4PAECh. 11 - Prob. 11.5PAECh. 11 - Prob. 11.6PAECh. 11 - Asphalt is composed of a mixture of organic...Ch. 11 - Prob. 11.8PAECh. 11 - Prob. 11.9PAECh. 11 - For each of the following, suggest appropriate...Ch. 11 - Prob. 11.11PAECh. 11 - Rank the following in order of increasing reaction...Ch. 11 - Prob. 11.13PAECh. 11 - Candle wax is a mixture of hydrocarbons. In the...Ch. 11 - Prob. 11.15PAECh. 11 - The reaction for the Haber process, the industrial...Ch. 11 - 11.17 Ammonia can react with oxygen to produce...Ch. 11 - The following data were obtained in the...Ch. 11 - Prob. 11.19PAECh. 11 - Experimental data are listed here for the reaction...Ch. 11 - Azomethane, CH3NNCH3, is not a stable compound,...Ch. 11 - Prob. 11.22PAECh. 11 - A reaction has the experimental rate equation Rate...Ch. 11 - Second-order rate constants used in modeling...Ch. 11 - For each of the rate laws below, what is the order...Ch. 11 - 11.26 The reaction of C(Xg) with NO2(g) is second...Ch. 11 - Prob. 11.27PAECh. 11 - Prob. 11.28PAECh. 11 - The hypothetical reaction, A + B —*C, has the rate...Ch. 11 - The rate of the decomposition of hydrogen...Ch. 11 - Prob. 11.31PAECh. 11 - 11.32 The following experimental data were...Ch. 11 - The following experimental data were obtained for...Ch. 11 - 11.34 Rate data were obtained at 25°C for the...Ch. 11 - 11.35 For the reaction 2 NO(g) + 2 H?(g) — N,(g) +...Ch. 11 - The reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a...Ch. 11 - Prob. 11.37PAECh. 11 - Prob. 11.38PAECh. 11 - The decomposition of N2O5 in solution in carbon...Ch. 11 - In Exercise 11.39, if the initial concentration of...Ch. 11 - 11.41 For a drug to be effective in treating an...Ch. 11 - Amoxicillin is an antibiotic packaged as a powder....Ch. 11 - As with any drug, aspirin (acetylsalicylic acid)...Ch. 11 - 11.44 A possible reaction for the degradation of...Ch. 11 - The initial concentration of the reactant in a...Ch. 11 - A substance undergoes first-order decomposition....Ch. 11 - Prob. 11.47PAECh. 11 - 11.48 The following data were collected for the...Ch. 11 - The rate of photodecomposition of the herbicide...Ch. 11 - Prob. 11.50PAECh. 11 - 11.51 Peroxyacetyl nitrate (PAN) has the chemical...Ch. 11 - Hydrogen peroxide (H20i) decomposes into water and...Ch. 11 - 11.53 The reaction in which CO, decomposes to CO...Ch. 11 - use the kineticmolecular theory to explain why an...Ch. 11 - The following rate constants were obtained in an...Ch. 11 - The table below presents measured rate constants...Ch. 11 - Prob. 11.57PAECh. 11 - Prob. 11.58PAECh. 11 - Can a reaction mechanism ever be proven correct?...Ch. 11 - Prob. 11.60PAECh. 11 - Describe how the Chapman cycle is a reaction...Ch. 11 - Prob. 11.62PAECh. 11 - The following mechanism is proposed for a...Ch. 11 - 11.64 HBr is oxidized in the following reaction: 4...Ch. 11 - Prob. 11.65PAECh. 11 - Prob. 11.66PAECh. 11 - What distinguishes homogeneous and heterogeneous...Ch. 11 - Prob. 11.68PAECh. 11 - In Chapter 3, we discussed the conversion of...Ch. 11 - The label on a bottle of 3% (by volume) hydrogen...Ch. 11 - Prob. 11.71PAECh. 11 - Prob. 11.72PAECh. 11 - Prob. 11.73PAECh. 11 - 11.74 The AQI includes six levels, including...Ch. 11 - Prob. 11.75PAECh. 11 - Prob. 11.76PAECh. 11 - Prob. 11.77PAECh. 11 - Prob. 11.78PAECh. 11 - Prob. 11.79PAECh. 11 - Prob. 11.80PAECh. 11 - Prob. 11.81PAECh. 11 - Prob. 11.82PAECh. 11 - Bacteria cause milk to go sour by generating...Ch. 11 - Prob. 11.84PAECh. 11 - Prob. 11.85PAECh. 11 - Prob. 11.86PAECh. 11 - Prob. 11.87PAECh. 11 - Prob. 11.88PAECh. 11 - Prob. 11.89PAECh. 11 - 11.90 Draw a hypothetical activation energy...Ch. 11 - Prob. 11.91PAECh. 11 - Prob. 11.92PAECh. 11 - 11.93 On a particular day, the ozone level in...Ch. 11 - Prob. 11.94PAECh. 11 - The following is a thought experiment. Imagine...Ch. 11 - The following statements relate to the reaction...Ch. 11 - Prob. 11.97PAECh. 11 - Experiments show that the reaction of nitrogen...Ch. 11 - Substances that poison a catalyst pose a major...Ch. 11 - Prob. 11.100PAECh. 11 - Prob. 11.101PAECh. 11 - 11.102 Suppose that you are studying a reaction...Ch. 11 - Prob. 11.103PAECh. 11 - Prob. 11.104PAECh. 11 - Prob. 11.105PAECh. 11 - Prob. 11.106PAECh. 11 - 11.1047 Fluorine often reacts explosively. What...Ch. 11 - Prob. 11.108PAECh. 11 - Prob. 11.109PAECh. 11 - When formic acid is heated, it decomposes to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The ore cinnabar (HgS) is an important source of mercury. Cinnabar is a red solid whose solubility in water is 5.5 X 10-2 mol L-1. Calculate its \p. What is its solubility' in grams per 100 g of water?arrow_forward. Explain what it means that a reaction has reached a state of chemical equilibrium. Explain why equilibrium is a dynamic state: Does a reaction really “stop” when the system reaches a state of equilibrium? Explain why, once a chemical system has reached equilibrium, the concentrations of all reactants remain constant with time. Why does this constancy of concentration not contradict our picture of equilibrium as being dynamic? What happens to the rates of the forward and reverse reactions as a system proceeds to equilibrium from a starting point where only reactants are present?arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forward
- Determine rxnH 25 C for the following reaction: NO g O2 g NO2 g This reaction is a major participant in the formation of smog.arrow_forwardSodium chloride is added to water (at 25C) until it is saturated. Calculate the Cl concentration in such a solution. Species G(kJ/mol) NaCl(s) 384 Na+(aq) 262 Cl(aq) 131arrow_forwardWhat is the law of mass action? Is it true that the value of K depends on the amounts of reactants and products mixed together initially? Explain. Is it true that reactions with large equilibrium constant values are very fast? Explain. There is only one value of the equilibrium constant for a particular system at a particular temperature, but there is an infinite number of equilibrium positions. Explain.arrow_forward
- A student set up an experiment for six different trials of the reaction between 1.00-M aqueous acetic acid, CH3COOH, and solid sodium hydrogen carbonate, NaHCO3. CH3COOH(aq) + NaHCO3(s) NaCH3CO2(aq) + CO2(g) + H2O() The volume of acetic acid was kept constant, but the mass of sodium bicarbonate increased with each trial. The results of the tests are shown in the figure. (a) In which trial(s) is the acetic acid the limiting reactant? (b) In which trial(s) is sodium bicarbonate the limiting reactant? (c) Explain your reasoning in parts (a) and (b).arrow_forwardSuppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forwardSubstances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forward
- The boxes shown below represent a set of initial conditions for the reaction: Draw a quantitative molecular picture that shows what this system looks like after the reactants are mixed in one of the boxes and the system reaches equilibrium. Support your answer with calculations.arrow_forwardThe hydrocarbon naphthalene was frequently used in mothballs until recently, when it was discovered that human inhalation of naphthalene vapors can lead to hemolytic anemia. Naphthalene is 93.71% carbon by mass, and a 0.256-mole sample of naphthalene has a mass of 32.8 g. What is the molecular formula of naphthalene? This compound works as a pesticide in mothballs by. sublimation of the .solid so that it fumigates enclosed spaces with its vapors according to the equation Naphthalene(s)naphthalene(g)K=4.29106(at298K) If 3.00 g solid naphthalene is placed into an enclosed space with a volume of 5.00 L at 25C, what percentage of the naphthalene will have sublimed once equilibrium bas been established?arrow_forwardWrite a balanced chemical equation for a totally gaseous equilibrium system that would lead to the following equilibrium constant expression. Keq=[N2]2[H2O]6[NH3]4[O2]3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY