Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.6QE
Why does a perspiring body achieve greater cooling when the wind is blowing than in calm air?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
After exercising on a hot summer day and working up a sweat, you often become cool when you stop.What is molecular-level explanation of this phenomenon?
Explain why water in a swimming pool takes a long time to heat up at the beginning of the summer and will still be warm at the end of the summer when the air temperatures drop?
2. Explain why rubbing alcohol, which has been warmed to your body
temperature still feels cooled when applied to your skin.
Chapter 11 Solutions
Chemistry: Principles and Practice
Ch. 11 - Prob. 11.1QECh. 11 - Prob. 11.2QECh. 11 - Prob. 11.3QECh. 11 - Prob. 11.4QECh. 11 - Prob. 11.5QECh. 11 - Why does a perspiring body achieve greater cooling...Ch. 11 - Prob. 11.7QECh. 11 - Prob. 11.8QECh. 11 - Prob. 11.9QECh. 11 - Prob. 11.10QE
Ch. 11 - Prob. 11.11QECh. 11 - Prob. 11.12QECh. 11 - Prob. 11.13QECh. 11 - Prob. 11.14QECh. 11 - Prob. 11.15QECh. 11 - Prob. 11.16QECh. 11 - Prob. 11.17QECh. 11 - Prob. 11.18QECh. 11 - Prob. 11.19QECh. 11 - Prob. 11.20QECh. 11 - The compounds ethanol (C2H5OH) and dimethyl ether...Ch. 11 - Prob. 11.22QECh. 11 - Prob. 11.23QECh. 11 - An amorphous solid can sometimes be converted to a...Ch. 11 - Prob. 11.25QECh. 11 - Prob. 11.26QECh. 11 - Prob. 11.27QECh. 11 - Prob. 11.28QECh. 11 - Prob. 11.29QECh. 11 - Prob. 11.30QECh. 11 - Prob. 11.31QECh. 11 - Prob. 11.32QECh. 11 - Prob. 11.33QECh. 11 - Prob. 11.34QECh. 11 - Prob. 11.35QECh. 11 - Prob. 11.36QECh. 11 - Prob. 11.37QECh. 11 - Prob. 11.38QECh. 11 - What is the enthalpy change when a 1.00-kg block...Ch. 11 - Prob. 11.40QECh. 11 - Prob. 11.41QECh. 11 - Prob. 11.42QECh. 11 - Prob. 11.43QECh. 11 - Prob. 11.44QECh. 11 - Prob. 11.45QECh. 11 - Prob. 11.46QECh. 11 - Prob. 11.47QECh. 11 - Prob. 11.48QECh. 11 - Identify the kinds of intermolecular forces...Ch. 11 - Prob. 11.50QECh. 11 - Prob. 11.51QECh. 11 - Prob. 11.52QECh. 11 - Prob. 11.53QECh. 11 - Prob. 11.54QECh. 11 - Prob. 11.55QECh. 11 - Prob. 11.56QECh. 11 - Prob. 11.57QECh. 11 - Prob. 11.58QECh. 11 - Prob. 11.59QECh. 11 - Identify the kinds of forces that are most...Ch. 11 - Arrange the following substances in order of...Ch. 11 - Arrange the following substances in order of...Ch. 11 - Prob. 11.63QECh. 11 - Silicon carbide, SiC, is a very hard, high-melting...Ch. 11 - Prob. 11.65QECh. 11 - Calcium oxide consists of a face-centered cubic...Ch. 11 - Prob. 11.67QECh. 11 - Prob. 11.68QECh. 11 - Prob. 11.69QECh. 11 - Prob. 11.70QECh. 11 - Prob. 11.71QECh. 11 - Prob. 11.72QECh. 11 - Prob. 11.73QECh. 11 - Prob. 11.74QECh. 11 - Lithium hydride (LiH) has the sodium chloride...Ch. 11 - Cesium iodide crystallizes as a simple cubic array...Ch. 11 - Palladium has a cubic crystal structure in which...Ch. 11 - Prob. 11.78QECh. 11 - Prob. 11.79QECh. 11 - Prob. 11.80QECh. 11 - Prob. 11.81QECh. 11 - Prob. 11.82QECh. 11 - Prob. 11.83QECh. 11 - Prob. 11.84QECh. 11 - Prob. 11.85QECh. 11 - The coordination number of uniformly sized spheres...Ch. 11 - Prob. 11.87QECh. 11 - Prob. 11.88QECh. 11 - Prob. 11.89QECh. 11 - Prob. 11.90QECh. 11 - Prob. 11.91QECh. 11 - Prob. 11.93QECh. 11 - Prob. 11.94QECh. 11 - A 1.50-g sample of methanol (CH3OH) is placed in...Ch. 11 - Prob. 11.96QECh. 11 - Prob. 11.97QECh. 11 - Prob. 11.98QECh. 11 - Prob. 11.99QECh. 11 - Prob. 11.100QECh. 11 - Prob. 11.103QE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Why does sweating cool the human body?arrow_forward22) Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventually be converted into sweat and evaporate. If you drink a 20-ounce bottle of water (590g) that had been in the refrigerator at 3.8 °C, how much heat is needed to convert all of that water into sweat and then to vapor? (Note: Your body temperature is 36.6 °C. For the purpose of solving this problem, assume that the therm properties of sweat are the same as for water. Us, liquid water = 4.184 J/g °C Cs, steam= 1.84 J/g °C C3, ice = 2.09 /g °C AHvap = 40.67 kJ/mol at 36.6 °C. %3D A Hus = 6.01 kJ/mol A) 1420 kJ B) 81 kJ C) 1150 kJ 23) Based on the graph shown below, choose the correct statement about sublimation? Gas Liquid sublimation Solid A) Sublimation is a phase transition from solid to gas B) According to Hess Law, AHsub can be calculated as sum of AHvap and AHUS C) Both A and B are correctarrow_forwardPlease solve the questions comprehensively. Thank you! Compare the effect of drinking 250-ml of ice water with the cooling effect of sweating out 250-ml of water. Calculate the amount of heat (joules) required to convert 200g of ice cubes (0°C) to gas at 100°C.arrow_forward
- How many grams of water at 0C will be melted by the condensation of 1 g of steam at 100C?arrow_forwardWhich of the following statements is true? Specific heat capacity is dependent on the amount of the substance Specific heat is characterized as a function of temperature Latent heat of fusion is dependent on temperature ? Latent heat of fusion is usually greater than the latent heat of vaporization.arrow_forwardHello there! I’m trying to understand calorimetry and I’m a bit confused about how when finding latent heat of fusion, why the amount of ice you have will have an impact on the measured latent heat of fusion. Is it typical to have a more accurate measurement when you use more ice as apposed to less? I’m just trying to wrap my head around this subject and was hoping you guys might have some helpful knowledge you could share? Thanks!arrow_forward
- Please don't provide handwritten solution ....arrow_forwardTwo 20.0 g ice cubes at −20.0 ∘C−20.0 ∘C are placed into 245 g245 g of water at 25.0 ∘C.25.0 ∘C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, ?f,�f, of the water after all the ice melts.arrow_forwardTwo 20.0 g ice cubes at −10.0 ∘C are placed into 285 g of water at 25.0 ∘C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, ?f, of the water after all the ice melts.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY